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PREFACE

Aerodynamic theory was not prepared to offer assistance in the early development of the
airplane. The scientific comiunity, most qualified for action at the forefront of human endeavor,
often turns out in practice to be surprisingly conservative. It is recorded that Lord Rayleigh
expressed *‘not the smallest molecule of faith in aerial navigation, except by balloon.” It was not
until experiments such as those of Lilienthal and Langley and the successful powered flights of the
Wright brothers that correct theories for the aerodynamic action of wings were developed.

Following the successful demonstrations of the Wright brothers, aerodynamic theory devel-
oped rapidly, primarily in European laboratories. These developments we associate with the names
Joukowsky, Kutta, Prandt] and his students, Munk, Betz, and Von Karman. It should not be
forgotten that the writings of F. W. Lanchester provide many of the physical insights that were
elaborated in these mathematical theories.

Throughout World War I, these developments in aerodynamic theory remained virtually
unknown in the U.S. However, in the early 1920°s, the U.S. National Advisory Committee for
Aeronautics undertook to franslate or otherwise make available important works on aerodynamic
theory in the form of NACA Technical Reports, Notes, and Memoranda, and to encourage similar
effort in its own laboratory.

At the present time, many of these old NACA documents are no longer readily available and it
seems worthwhile to collect the most important early works under the title “Classical Aero-
dynamics.” In most cases, the theories are explained in the author’s own words and often with a
degree of clarity unequalled in later interpretations.

R. T. Jones

Senior Staff Scientist
NASA-Ames Research Center
June 18, 1979
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APPLICATIONS OF MODERN HYDRODYNAMICS TO AERONAUTICS.
By L. PRANDTL.

PART I.
FUNDAMENTAL CONCEPTS AND THE MOST IMPORTANT THEOREMS.

1. Al actual fluids show internal friction (viscosity), yet the forces due to viscosity, with
the dimensions and velocities ordinarily oceurring in practice, are so very small in comparison
with the forees due to inertia, for water as well as for air, that we seem justified, as a first ap-
proximation, in entirely neglecting viscosity. Since the consideration of viscosity in the
mathematical treatment of the problem introduces difficulties which have so far been overcome
only in a few specially simple cases, we are forced to neglect entirely internal friction unless we
wish to do without the mathematical treatment.

We must now ask how far this is allowable for actual fluids, and how far not. A closer
exgmination shows us that for the interior of the fluid we can immediately apply our knowl-
edge of the motion of a nonviscous fluid, but that care must be taken in considering the layers
of the fluid in the immediate neighborhood of solid bodies. Friction between fluid and solid
body never comes into consideration in the fields of application to be treated here, because it
is established by reliable experiments that fluids like water and sir never slide on the surface
of the body; what happens is, the final fluid layer immediately in contact with the body is
attached to it (is at rest relative to it), and all the friction of fluids with solid bodies is therefore
an internal friction of the fluid. Theory and experiment agree in indicating that the transition
from the velocity of the body to that of the stream in such a case takes place in a thin layer of
the fluid, which is so much the thinner, the less the viscosity. In this layer, which we call the
boundary layer, the forees due to viscosity are of the same order of magnitude as the forees due
to inertia, as may be seen without difficulty.! It is therefore important to prove that, however

" small the viseosity is, there are always in a boundary layer on the surface of the body forces
dus to viscosity (reckoned per unit velume) which are of the same order of magnitude as those
due to inertia. Closer investigation concerning this shows that under certain conditions there
may occur a reversal of flow in the boundary layer, and as a consequence a stopping of the fluid
in the layer which is set in rotation by the viscous forees, so that, further on, the whole flow is
changed owing to the formation of vortices, The analysis of the phenomena which lead to the
formstion of vortices shows that it takes place where the fluid experiences a retardation of flow
along the body. The retardation in softie cases must reach a eertain finite amount so that a
‘reverse flow arises. Such retardation of flow oceurs regularly in the rear of blunt bodies; there-
fore vortices are formed there very soon after the flow begins, and consequently the results
which are furnished by the theory of nonviscous flow can not be applied. On the other hand,
in the rear of very tapering bodies the retardations are often so small that there is no noticeable
formation of vortices. The principal successful results of hydrodynamics apply to this ease.
Since it iz these tapering hodies which offer specially small resistance and which, therefore,
have found speeial consideration in seronsutics under similar applications, the theory can be
made useful exactly for those bodies which are of most technical interest.

1 From this conslderation one can calculsl;e the approxlmate thickness of tire boundary layer ior each special casa,

20167—23—11
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For the conziderations which follow we ebtain from what has gone before the result that
in the interior of the fluid its viscosity, if it is small, has no essential influence, but that for
layers of the fiuid in immediate contact with solid bodies exceptions to the laws of a nonviscous
fluid must be allowable. We shall try to formulate these exceptions so as to be, as far as possi-
ble, in agreement with the facts of experiment.

2. A further remark must be made concerning the effect of the compressibility of the
floid upon the character of the flow in the case of the motion of solid badies in the fluid. All
actual fluids are compressible. In order to compress a volume of air by 1 per cent, a pressure
of about one cne-hundredth of an atmosphere is needed. In the case of water, to produce an
equal change in volume, a pressure of 200 atmospheres is required; the difference therefore is
very great. With water it is nearly always allowable to neglect the changes in volume arising
from the pressure differences due to the motions, and therefore to treat it as absolutely incora-
presgible. But also in the case of motions in air We can ignore the compressibility so long as
the pressure differences caused by the motion are sufficiently emall, Consideration of compressi-
hility in the mathematical treatment of flow phenomena introduces such great difficulties that
we will quietly neglect volume changes of several per cent, and in the caleulations air will bs
looked upon as incompressible. A compression of 3 per cent, for instance, oceurs in front of a
body which is being moved with a velocity of about 80 m./sec. It is seen, then, that it appears
allowable to neglect the compressibility in the ordinary applications to technical aeronautics,
Only with the blades of the air screw do essentially greater velocities occur, snd in this case the
influence of the compressibility is to be expected and has already been observed. The motion
of a body with great velocity has been investigated up to the present, only along general lines,
It appesrs that if the velocity of motion excaeds that of sound for the fiuid, the phenomenas. are
changed entirely, but that up close to this velocity the flow is approximately of the same char- -
acter as in an incompressible fluid.

3. We shall concern ourselves in what follows only with a nonviscous and incompressible
fluid, sbout which we have learned that it will furnish sn approximatioh sufficient for our
applications, with the reservations made. Sueh & fluid is salso called * the ideal fluid.”

What are the properties of such an ideal fluid ¥ I do not consider it here my task to develop
and to prove all of them, since the theorems of classical hydrodynamics are contained in all
textbooks on the subject and may be studied there. I propose to state in what follows, for -
the benefit- of those readers who have not yet studied hydrodynamics, the most important
principles and theorems which will be needed for further developments, in such a manner that
these developments may be grasped. 1 ask these readers, therefore, simply to believe the
theorems which I shall state until they have the time to study the subjeet in some textbook
on hydrodynamies.

The principal method of description of problems in hydrodynamics consists in expressing in
formulas as functions of space and time the velocity of flow, given by its three rectangular com-
ponents, u, v, w, and in addition the fluid pressure p. The condition of flow is evidently com-
pletely known if «, v, w, and p are given as functions of 2, y, z, and ¢, since then w, v, w, and p
can be calculated for any srbitrarily selected point and for every instant of time. The direc-
tion of flow is defined by the ratios of 4, v, and w; the magnitude of the velocity is v +v? -+
The “stresmlines’’” will be obtained if lines are drawn which coincide with the direction of
flow at all points where they touch, which can be accomplished mathematicslly by an inte-
gration. If the flow described by the formulas is to be that caused by a definite body, then
st those points in space, which at any instant form the surface of the body, the components of
the fluid velocity normal to this surface must coincide with the corresponding components
of the velocity of the body. In this way the condition is expressed that neither does the fluid
penetrate into the body nor is there any gap between it-and the fluid. If the body is at rest
in & stream, the normal components of the velocity at its surface must be zero; that is, the flow
must be tangential to the surface, which in this case therefore is formed of stream lines.
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4, In o stationary flow—that is, in-a flow which docs not change with the fime, in which
then every new fiuid partiele, when it replaces another particle in front of it; assumes its velocity,
both in magnitude and in direction and also the same pressure-—there is, for the fluid particles
lying on the same stream line, a. very remarkable relation betwaen the magnitude of the velocity,
designated here by V, and the pressure, the so-called Bernouilli equation—

p+5 V2=const. (1)

{p is the density of the fluid, i. e., the mass of & unit volume). This relation is at once appli-
cable to the case of a body moving uniformly and in a straight line in a fluid at rest, for we are
always at liberty to use for our discussions any reference system having & uniform motion in &
gtraight line. If we make the welocity of the reference system coincide with that of the body,
then the boady is at rest with reference to it, and the flow around it is stationary. H now V
is the velocity of the body relative to the stationary air, the latter will have in the new refer-
ence sysiem the velocity 7 upon the body {a man on an airplane in flight malkes observations
in terms of sueh a reference system, and feels the motion of flight as “wind’"}.

The flow of incident air is divided at a blunt body, as shown in figure 1. At the point A
the flow comes completely to rest, and then is again set in motion in opposite directions, tan-
gential to the surface of the body. We learn from equation

(1) that at such a point, which we shall call & “resi-point,” _____////—— wﬂ“‘;,——ﬂ';
the pressure must be greater by §'° V* then in the undisturbed h/',«
fiuid. We shall cell the magnitude of this pressure, of which /

we shall make frequent use, the ““dynamieal pressure,” and
shall designate it by ¢. An open end of a tube facing the

stream produces a rest point of & similar kind, and there arises
in the interior of the tube, as very careful experiments have \
shown, the exact dynamical pressure, so that this principle —.\_

can be used for the messurement of the velocity, and is in
fact much used. The dynamieal pressure is also well suited
to express the laws of air resistance. It is known that this resistance is proportional to

Fig. 1.—Flaw around s blant hody,

the square of the velocity and to the density of the medium; but g=%V’; 80 the law of air
resistance may also be expressed by the formula

W=¢.F.g (2)

where Fis the area of the surface and ¢ is 2 pure number, With this mode of expression it
appears very clearly that the force ealled the “drag” iz equal to surface times pressure differ-
ence (the formula has the same form as the one for the piston force in & steam engine). This
mode of stating the relation has been intreduced in Germany and Austria and has proved use-
ful. The air-resistance coefficients then become twice as large as the “absolute”. coefficients
previeusly used.

Since ¥? can not become less than zero, an increase of pressure greater than ¢ can not, by
‘equation (1), oceur. For diminution of pressurc, however, no definite limis can be set. In
the case of flow past convex surfaces marked inereases of velocity of flow occur and in eonnection
with them diminutions of pressure which fréequently amount to 3¢ and more.

5. A series of typical properties of motion of nonviseous fluids may be deduced in a useful
manner from the following theorem, which is due to Lord Kelvin. Before the theorem itself
is stated, two concepts must be defined. 1. The ecirenlation: Consider the line integral of the
velocity f V cos (V, ds). ds, which is formed exactly like the line integral of & force, which is
called “the work of the force.”” The amount of this line integral, taken over a path which
returns on itself is called the circulstion of the flow, 2. The fluid line: By this is meant a line
which is always formed of the same fluid pazticles, which therefore shares-in the motion of the
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fluid. The theorem of Lord Kelvin is: In a nonviscous fluid the circulation slong every fluid
line remains unchanged as time goes on. But the folloiving must be added:

(1} The case may arise that a floid line is intersected by a solid body moving in the fluid.
If this occurs, the theorem ceases to apply. As an example I mention the case in which one
pushes a flat plate into a fluid at rest, and then by means of the plate exerts a pressure on the
fluid. By this a cireulation arises which will remain if afterwards the plate is quickly withdrawn
in its own plane. See figure 2.

(2) In order that the theorem may apply, we must exclude mass forees of such » character
that work is furnished by them along s path which returns on itself. Such forces do not ordi-
narily arise and need not be taken into account here, where we are concerned regularly only
with gravity.

{3} The fluid must be homogeneous, i. ¢., of the same density at all points. We can easily
see that in the case of nonuniform density circulation can arise of itself in the course of time
if we think of the natural ascent of heated air in the midst of eold air.. The circulation increases
continuously along a line which passes upward in the warm air and returns downward in the
cold air.

Frequently the case arises that the fluid at the beginning is at rest or in absolutely uniform
motion, so that the circulation for every imaginable closed line in the fluid is zero. Our theorem
then says that for every closed line that can arise from one of the originally closed lines the
circulation remains zero, in which we must make exception, as mentioned above, of those lines
which are cut by bodies. If the line integral along every closed line is zero, the line integral
for an open curve from a definite point O to an arbitrary point P is independent of the selection

of the line along which the integral is taken (if this were not so, and if the
integrals along twe lines from O to P were different, it is evident that the
! line integral along the closed curve GPO would-not be zero, which contra~

dicts our premise}. The line integral along the line OF depends, therefore, -
) . since we will consideronceor all the point @ as & fixed owe, only on the coordi-
}ﬁjlﬁaﬁmﬁ?ﬂ?ﬂméﬁ nates of the point P, or, expressed differently, it is a function of these coor-
tion and withdrewal of  dinates. From analogy with corresponding considerations in the case of
fiat plate. fields of foree, this line integral is called the ‘‘velocity potential,” and the
particular kind of motion in which such a potential exists is called & “potential motion.” As
follows immediately from the meaning of line integrals, the component of the veloeity in a
definite direction is the derivative of the potential in this direction. If the line-element is
perpendicular to the resultant velocity, the increase of the potential equals zero, i. e., the sur-
faces of constant potential are everywhere normal to the velocity of flow., The velocity itself
is called the gradient of the potential. The velocity components v, v, w are connected with the

potential & by the following equations:

3o 3% 3

‘H,=a: v =3_3? W= dz (3)
The fact that the flow takes place without any change in volume is expressed by stating that
as much flows out of every element of volume as flows in.  This leads to the equation
dJu  dv  dw

$+6‘_y+3_z=0 {4)

In the case of potential flow we therefore have

R L

P R (4a)

as the condition for flow without change in volume. All functions & &wa ), wl?.ich sapisfy

this last equation, represent possible forms of flow. This representation of & flow is specially

convenient for caleulations, since by it the entire flow is given by means of the one function &.

The most valuable property of the representations is, though, that the sum of two, or of as

many as one desires, funetions ®, each of which satisfies equation (44), also satisfies this equation.
and therefore represents a possible type of flow {*superposition of flows”).
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6. Another concept ean be derived from the cireulation, which is convenient for many con-
siderations, viz, that of rotation. The component of the rotation with reference to any axis
is obtained if the circulation is taken around an elementary surface of unit ares in & plape
perpendicular to the axis. Expressed more exactly, such a rotation component is the ratio of
the circulation around the edge of any such infinitesimal surface to the ares of the surface, The
total rotation is a vector and is obtained from the rotation components for three mutually per-
pendicular axes. In the case that the fluid rotates like & rigid body, the rotation thus defined
comes out as twice the angular velocity of the rigid body. If we take a rectangular system of
axes and consider the rotations with reference to the separate axes, we find that the rotation can
also be expressed as the geometrical sum of the angular velocities with reference to the three axes.

‘The statemént that in the case of a poten’mal motion the circulation is zero for every
closed fluid line can now be expressed by saying the rotation in it is always zero. The theorem
that the circulation, if it is zero, remains zero under the conditions mentioned, can also now .
be expressed by saying that, if these conditions are satisfied in & fluid in which there is no
rotation, rotation can never arise. An irrotational fluid motion, therefore, always remains
irrotational. In this, however, the following exceptions are to be noted: If the fluid is divided
owing to bodies being present in it, the theorem under consideration does not apply to the
fluid layer in which the divided flow reunites, not only in the case of figure 2 but also in the
case of stationary phenomena as in figure 3,
since in this case a closed fluid line drawn in
front of the body can not be transformed into |
a fluid line that intersects the region where the 7
fluid streams come together. Figure 3 shows :ur_/
four successive shapes of such a fluid line. This _, —
region is, besides, filled with fluid particles which ,k-—-—f"‘“_" N
have come very close to the body. We are - '
therefore led to the conclusion from the stand-
point of a fluid with very small but not entirely ! . _ i
v anishing ?iSC-OSitY that the Appearance of vor- F1a. 3 .-~Suecessive positions olb_:di;l.nd line ity flow around 4 solid
tices af the points of reunion of the flow in the
rear of the body does not contradict the laws of hydrodynamics. The three compenents of the
rotation £, 5, { are expressed ss follows by means of the velocity cornponents «, v, w.

¢ ow o Qu_ow __Jv_ouw
ay 1 d3s dx i =n oy

If the veiocity components are derived from a potential, as shown in equation (2), the rotation
#e &P
dedy  dyde

7. Very remarkable theorems hold for the rotation, which were discovered by v. Helmholtz
and stated in bis famous work on vortex motions. Concerning the geometrical properties of the
rotation the following must be said:

At all points of the fluid where rotation exists the direction of the resultant rotation axes
can be indicated, and lines can also be drawn whose directions coincide everywhere with these
axes, just as the stream lines are drawn so as to coincide with the directions of the velocity.
These lines will be called, following Helmholtz, * vortex lines.”” The vortex lines through the
points of a small closed curve form a tube called a “vortex tube.” It is an imamediate con-
sequence of the geometrical ides of rotation as dednced above that through the entire extent
of a vortex tube its strength—i. e., the circulation around the boundary of the tube—is constant.
It is ‘seen, in fact, that on geometrical grounds the space distribution of rotation guite inde-
pendently of the special properties of the velocity field from which it is deduced is of the same
nature as the space distribution of the velocities in an incompressible fluid. Consequently a
vortex tube, just like 2 stream line in an incompressible fluid, can not end anywhere in the
interior of the fluid; and the strength of the vortex, exactiy like the quantity of fluid passing
per second through the tube of stream lines, has at one and the same instant the same value

o
e

(&

components, according to equation (5) vanish identically, since
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throughout the vortex tube. If Lord Kelvin’s theorem is now applied to the elosed fluid line
which forms the edge of a small element of the surface of a vortex tube, the cirenlation along it
is zero, since the surface inclosed is parsllel to the rotation axis at that point. Since the circiila-
tion can not change with the time, it follows that the element of surface at all later times will
also be part of the surface of a vortex tube. If we picture the entire bounding surface of a vortex
tube as made up of such elementary surfaces, it is evident that, since as the motion continues
this relation remains unchanged, the particles of the fluid which at any one time have formed
the boundary of & vertex tube will continue to form its boundary. From the consideration
of the eirculation along a closed line inclosing the vortex tube, we see that this circulation—i. a.,
the strength of our vortex tube-—has the same value at all times. Thus we have obtained the
theorems of Helmholtz, which now can be expressed as follows, calling the contents of a vortex
tube a “vortex filament™: “The particles of & fluid which at any instant belong to a vortex
filament always remain in it; the strength of a vortex filament throughout its extent and for
all time has the same value,” From this follows, among other things, that if & portion of the
filament is stretched, say, to double its length, and thereby its ¢ross section made one-half as
great, then the rotation is doubled, because the strength of the vortex, the product of the rota-
tion and the cross section, must remain the same. We arrive, therefore, at the result that the
vector expressing the rotation is changed in magnitude and direction exactly as the distance
between two neighboring particles on the axis of the filament is changed.

8. From the way the strengths of vortices have been defined it follows for a space filled
with any arbitrary vortex filaments, 8s a consequence of a lmown theorem of Stokes, that
the circulation around any closed line is equal to the algebraic sum of the vortex strengths
of all the filaments which cross a surface having the closed line as its boundary. If this closed
line is in any way continuously changed so that filaments are thereby cut, then evidently the
circulation is changed according to the extent of the strengths of the vortices which are cut.
Conversely we may conclude from the circumstance that the circulation around a closed line
(which naturslly can not be a fluid line) is changed by a definite amount by a certain displace-
ment, that by the displacement vortex strength of this amount will be cut, or expressed differ-
ently, that the surface passed over by the closed line in its displacement is traversed by vortex
filaments whose strengths add up algebraically to the amount of the change in the circulation.

The theorems concerning vortex motion are specially important hecause in many cases
it is easier to make a statement as to the shape of the vortex filamenis than as to the shape of
the stream lines, and because there is a mode of calculation by means of which the velocity
at any point of the space may be determined from a knowledge of the distribution of the rota-
tion. This formula, so important for us, must now be discussed. If I is the strength of
thin vortex filament and d¢ an elament of its medial line, and if, further, r is the distance from
the vortex. element to a point P at which the velocity is to be caleulated, finally if « is the angle
between ds and 7, then the amount of the velocity due to the vortex element is

T dssin «,

dv= —4’;7—;‘3— ) _ (6)
the direction of this contribution to the velocity is perpendicular to the plane of d¢ and ». The
total velocily at the point P is obtained H the contributions of all the vortex elements present
in the space are added. The law for this caleulation agrees then exactly with that of Biot-
Savart, by the help of which the magnetic field due to an electric current is calculated. Vor-
tex filaments correspond in it to the electric currents, and the vector of the velocity to the
vector of the magnetic field.

As an example we may take an infinitely long straight vortex filament. The contributions
to the velocity at a point P are all in the same direction, and the total velocity can be deter-
mined by a simple integration of equation (8). Therefore this velocity is

T dssine
i A

—
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h h
sjn’a&a' Further » ~sma’

As seen by figure 4, s=» ctg «, and by differentiation, ds= —
s0. that

"*I‘g?if sin ada~ ~gloos o] = ®a).

Fhis result could be deduced in a simpler manner from the concept of circulation if we were
to use the theorem, already proved, that the circulation for any eclosed line coincides with
the vortex strength of the filaments which are incloged by it. The circulation for every closed
line which goes once around a single filament must therefore comeide with its strength, TIf
the velocity at a point of a circle of radius & around our straight filament equals » then this

circulation equals “path times velocity” =2wkh v, whence immediately follows 1.:=2—£h- The

more exact investigation of this velocity field shows that for cvery point outside the filament
(and the formula applies only to such points) the rotation is zere, so that in fact we are treat-
ing the case of a velocity distribution in which oniy along the axis does rotation prevail, at
all other points rotation is not present.

For a finite portion of a straight vortex filament the preceding caleulation gives the value

p= ‘&"TL(COS o, - dos a,) (eb)

This formula may be applied only for a series of portions of vortices which together give an
mfinite or a closed line. The velocity fleld of & single portion of .a filament would require
rotation also outside the filament, in the sense that from the end of

the portion of the filament vortex lines spread out in all the space

and then all refurn together at the beginning of the portion. In the A
case of a line that has no ends this external rotation is removed, -~ &

since one end always coincides with the beginning of another portion J  ~-—i s~ Jds i—
of equal strength, and rotation is present only where it is predicated Fie. 4.—Velocity-fieid due to infinite
in the calculation. reptitinest vortex.

. If one wishes to represent the flow around solid bodies in & fluid, cne can in many cases
proceed by imagining the place of the solid bodies taken by the fluid, in the interior of whick
disturbances of flow (singularities) are imtroduced, by which the flow i1s so altered that the
boundaries of the bodies become streamline surfaces For such hypothetical constructions
in the interior of the space actually occupied by the body, one can assume, for instance, any
suitably selected vortices, which, however, since they are only imaginary, need not ebey the
laws of Helmholtz. As we shall see later, such imaginary vortices can be the seat of lifting
forces. Sources and sinks also, i. e., points where fluid eontinuously appears, or disappears,
ofter a useful method for cofistructions of this kind, While vortex filaments can actually
occur in the fluid, such sources and sinks may be assumed only in that part of the space which
actually is occupied by the body, since they represent a phenomenon which can not be realized.
A contradiction of the law of the conservation of matter is avoided, however, if there are assumed
to be inside the body both sources and sinks, of equal strengths, so that the Auid produced by
the sourees is taken back again by the sinks.

The method of sources and sinks will be described in greater detail when certain practical
problems are discussed; but ab this point, to make the matter clearer, the distribution of veloei-
ties in the case of a source may be deseribed, It is very simple, the flow takes place out from
the source uniformly on. all sides in the direction of the radii, Leb us describe arpund the point
source s concentric spherical surface, then, if the fluid output per second is @, the velocity at
the surface is

?}='4%3; (7}
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the velocity therefore decreases inversely proportional to the square of the distance. The
flow is a potential one, the potential comes out (as line-integral along the radius)

_ Q
= conet. I {(7a)

If a umform velocity toward the right of the whole fluid mass is superimposed on this
velocity distribution—while the point source remains stationary—then & flow is obiained
which, at & considerable distance from the source, is in straight lines from left to right. The
fluid coming out of the source iz therefore pressed toward the right (see fig. 5); it fills, at some
distance from the source, & cylinder whose diameter may be determined easily. If ¥V is the
velocity of the uniform flow, the radius r of the cylinder is given by the condition @=xr* V.
All that is necessary now is to assume on the axis of the source further to the right a sink of
the same strength as the souree for the whole mass of fluid from the source to vanish in this,
and the flow closes up behind the sink again exactly as it opened out in front of the source.
In this way we obigin the flow around an elongated body with blunt ends.

10. The speeial ease when in a fluid flow the phenomena in all planes which are parallel
to a given plane coincide absolutely plays an important role both practically and theoretically.
It the lines which conneet the corresponding
points of the different planes are perpendicular to
the planes, and all the streamlines are plane
curves which lie entirely in one of those planes,
we speak of a uniplanar flow. The flow around
a strut whose axis is perpendicular to the direc-
tion of the wind is an example of such a motion.

The mathematical treatment of plane poten-
tial flow of the ideal fluid has been worked out-
specially completely more than any other prob-
lem in hydrodynamies. This is due to the fact
that with the help of the complex quantities
(z-+1y, where i=+/—1, is called the imaginary

5 —upsrnosition o ow o woree. Umit) there can be deduced from every analytic
1o Bmfuperposition ofunfform Rowand (et cansed BY S MW function 4 case of flow of this type which is ineom-
pressible and irrotational. Every resl function, & (z, y) and'¥ (z, y), which satisfies the relation

&+ ¥ =flz + 1Y), (8)

where f is any analytic function, is the potentla.l of such a flow. Tlus can be geen from these
considerations: Let x-+4y be put—z, where z is now a “complex number.” Differentiate equa-
tion (8} first wath reference to and then with reference to y, thus giving

a@+ AY _dfoz _df

Yor —dedz dz
a<1> Ry df 8z df e _ov
ay Sdzdy” Yoz &y

-

In these the real parts on the two sides of the equations must be equal and the imaginary
ports also. If & is selected as the potential, the velocity components v and » are given by

g e e ®
T ay Sy ox
. . 9u . dv du . .
If now we write the expressions 3 +ETy {continuity) and 5 3y {(rotation) first in terms of
& and then of ¥, they become
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du dv_ &0, 8¢ &Y I
dr dy oz & oydx azoy
=0
b u_ ¥ P PV P
ds By oydz” Irdy ¢ oy’
=0

(10)

It is seen therefore that not only is the motion irrotational (as is self-evident since there is
gz?Jr-g? =¢ hesides corresponds exactlv
to our equation (4a). Since it is satisfied also by ¥, this can also be used as potential.

The function ¥, however, has, with reference to the flow deduced by using & as potential, a
special individual meaning. From equation (8) we can easily deduce that the lines ¥ const.
ure parallel to the veloeity; therefore, in other words, they are streamlines. In fact if we put

a potential), but it is also continuous. The refation

ok

dy iz v

d\D——*dz—l— (.3'?_! o, thendx— S
¥y

- which expresses the fact of parallelism. The lines ¥ = const. are therefore perpendicular to the
lines $=const. If we draw families of lines, &— const. and ¥ = const. for values of & and ¥
which differ from each other by the same small amount, it follows from the easily derived

equation 49 +?)d\[‘=§—§(d,'a:+idy) that the two bundles form a square network; from which fol--

lows that the diagonal curves of the network again form an orthogonal and in fact a square
network. This fact can be used practically in drawing such families of curves, because an error
in the drawing can be recognized by the eye in the wrong shape of the network of diagonal
curves and so can be improved. With a little practice fairly good accuracy may be obtained
by simply using the eye. Naturally there are also mathematical methods for further improve-
ment of such networks of curves. The function ¥, which is called the “stream function,”
hag another special meaning. If wa consider two streemlines ¥ =¥, and ¥=7,, the quantity
of fluid which flows between the two streamlines in a unit of time in a region of uniptanar flow
of thickness 1 equals ¥,—¥,. In fact if we consider the flow through & plane perpendicular to

the X -axis, this quantity is :
e
f udy = f --—dy f dV=¥,-¥,.
4]

The numericel value of the sfream function coincides therefore with the quantity of fuid which
flows between the point z, ¥ and the streamline ¥ —o.
As an example let the function ,
&+ =A@ 4"
be discussed briefly. It is simplest in general to ask first about the streamline ¥—o0, Asis
well known, if a transformation is made from rectangular coordinates to polar ones r, ¢, (z4+-&)"
=7" (00S ng +% sin ne). The imaginary part of this expression is 4+ sin ng. This is to be
put equal to i¥. ¥ =0 therefore gives sin np=o, i. ¢., np=0, x, 2r,etc. The streamlines ¥=o0

are therefore straight lines through the erigin of coordinates, which make an angle a=ﬁ with

each other, the flow is therefore the potential flow between two pla,ne walls making the angle
~o with each other. The other streamlines satisfy the equation r sin ny—const. The veloci-
ties can be obtained by differentiation, e. g., with reference to @

%:+1,&-—u—w=dn (@ +1y) " = Anrv1{gos (n~1) p +1 sin (n-1)p}
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For r=0 this expression becomes zero or infinite, according as » is greater or less than 11, i. e.,
according as the angle « is less or greater than #(=180°). TFigures 6 and 7 give the streamlines

for a=£=45° and gi\r=270°, corresponding to n=4 and % In the case of figurs 7 the velocity.

as just explained, becomes infinite at the corner. It would be expected that in the case of
the actual flow some effect due to friction would enter. In fact there are observed at such
corners, at the beginning of the motion, great weloeities, and immediately thereafter the for-
mation of vortices, by which the motion is so changed that the velocity
at the corner becomes finite.

It must also be noted that with an equatbiorr
<( p+ig=pl+iy) an
the o~y plane can be mapped upon the p-¢ plave, since to every pair

of values &,y & pair of velues p,q corresponds, to every point of the »—y
plane corresponds a point of the p-¢ plane, and therefore also to every
Fro. 6—Uniplnar fow e element of & line or to every curve in the former plane & linear element
on angle acist witn sacn, 81 8 curve in the latter plaze. The transformation keeps all angles
other, unchanged, i. e., corresponding lines intersect in both figures at the same
angle.

By inverting the function ¢ of equation (11} we can write

2 +iy=x (p+iq
and therefore deduce from equation (8} that

& +2¥=F [x(p +ig)] = F (p +ig) (i2)
¢ and ¥ are connected therefore with p and ¢ by an equation of the type of equation (8), and
hence, in the p—g plane, are potential and stream functions of a flow, and further of that flow
which arises from the transformation of the ®, ¥ network in the 2~y plang into the p-g plane.

This is a powerful method used to obtain by transformation from a known simple flow
new types of flow for other given boundaries. Applications of this will be given in section 14

11. The diseussion of the prineiples of the hydrodynamies of nonviseous fluids to be
applied by us may be stopped here. 1 a2dd but one considers-
tion, which has reference to a very usefnl theorem for obtaining
the forces in fluid motion, namely the so-called “momentum theo- /
rem for stationary motions,”

We have to apply to fluid motion the theorem of general
mechanics, which states that the rate of change with the time
of the linear momenium is equal to the resultant of all the ex-
ternal forces. To do this, consider a definite portion of the
fluid separated from the rest of the fluid by a closed surface.
This surface mnay, in accordance with the spirit of the theorem, !
be considered as a “fluid Slll'.face,” i e., made up ﬂ.lways of Fia, 7—Uniplanar flow aronnd rilane
the same fluid particles. We must now state in a formula the  volsmahingan eugle2i0® with each
change of the momentum of the fluid within the surface. If, as orhet:
we shall assume, the flow is stationary, then after & time di every fluid particle in the interior
will be veplaced by another, which has the same velocity ag had the former. On the boundary,
however, owing to its displacement, mass will pass out at the side where the fluid is approaching,
and a corresponding mass will enter on the side away from which the flow takes place. If d8
is the area of an element of surface, and v, the component of the velocity in the direction of
the outward drawn normal at this element, then at this point dm=pdS . v, dt. If we wish
to derive the componentof the “impulse’’—defined as the time rate of the change of momen-
tara—for any direction s, the contribution to it of the element of surface is

dJa=eJ,%?'=pdS . e, (13)
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With this formula we have made the transition from the fluid surface to a corresponding solid
“eontrol surface.”

The external forces are compounded of the fluid pressures on the eontrol surface and the
forces which are exercised on the fluid by any solid bodies which may be inside of the control
surface. If we call the latter F, we oDruin the equation

Z:Ps=f_f_p ccos(n,8) . d8 +p f_f‘vnvsds {14)

for the s component of the momentum theorem. The surface integrals are to be taken over the
entire closed control surface. The impulse integral can be limited to the exit side, if for every
velocity v, on that side the velocity v, is known with which the same particle arrives at the
approach side. Then in equation (13} d.J iz to be replaced by

QT 3" = vy, S S (00— ) (138)

The applications given in Part IT will furnish illustrations of the theorsm.

11
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PART IL
APPLICATIONS.

A. DISTRIBUTION OF PRESSURE ON AIRSHIP BODIES.

12. The first application of hydrodynamical theory to be tested by experiment in the
Gottingen Laboratory referred to the distribuntion of pressure over the surface of models of
airships. We can construct mathematically the flow for any number of varieties of ssctional
forms of bodies of revo'ution of this kind if we place along an axis parallel with the direction
of the air current any suitable distribution of sources and sinks, taking care that the total
strength of the sources and sinks are the same. According to the intensity of the uniform
motion which is superimposed upon the flow from the sources, we obtain from the same system
of sources and smks bodies of different thicknesses. In order to obtain the smoothest possible
shapes, the sources and sinks are generally distributed contin-
uous]y along the axis, althongh single-point sources are allowable.

' In the ease of continuously distributed’sources and sinks the
method of procedure is briefly this: The abseissas of the single
sources are denoted by &, the intensity of the source per unit of
length by fi(£), in which posu;n e values of f(£) denote sources, nega-
tive values sinks. The condition that makes the stream from the -
sourcées self-contained is expressed by the equation

Fro. $.—Fxplanation of yuantivies usod
Jn caloulation of streamline shapes.

T
_Ahseissae: Position of source. f f(:‘;‘) dE=a0.
L4

opdinates: Intensity of souree per unit
fength, L. e. /(). . ) _ ‘
ke By simply adding the potentials due to the single elementary

sources f(¥) dE, i. e., in this case by integrating them, the total flow due to the sources will be
given by the potential defined by the following formula

d (15)
1 (ir:;?;') ,",f J {ﬁ? d

in which r= y{z—£)2+v¢, and 7 is the perpendicular distance from the axis of the point for
which the potential is calculated, x is the abscissa along the axis measured from the same
origin as £. (See fig. 8.) There must be added to this potential that due 4o the uniform flow
with the velocity V, viz, #,= V2. The total potential is then &=&, +®,; and therefore the veloc-
ity parallel to the axisis u= g—f =¥+ ?—’ and the sidewise (radial) velocity is v= %3:%
In order to calculate the streamlines one could perform an integration of the direction
given by « and ». These lines are obtained more convenienily, in this case also, by means of
the stream function. {See sec. 10.) In the case of flow symmetrical with reference to the axis,
such as is here discussed, one can take as stream function the quantity of fivid flowing inside
the eircle drawn through the point z, 4 in a plane perpendicular to the axis and having its center
172
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on the axis. The amount of fluid delivered by the sources which lie up the stream is purposely
dedueted from this. It is not difficult to see that all points of the X—¥ plane, through whose
parallel circles the same amount of fluid flows per second—after deduction of the sources—

must lie on one and the same streamline, for evidently there is no flow, either in or ouf, through

the surface formed by the streamlines drawn through the points of any one paraliel circle
{since the flow is along the surface}; therefore the quantity of fluid flowing within this surface is
constant, so far as it is not increased by the sources. From the meaning of the stream funetion,
to determine which the velocity must be integrated over s surface, it follows that the stream
function of a flow due to two or more causes i at every point the sum of the siream functions
of the several partial flows. For a continuous distribution of sources therefore the stream
fenction  is obtained by an integration exactly as was the potential. According te our
premise the surface of the body is designated simply by the value ¢=0. The formulas are
obtained as follows:

The flow from a simple source through a circle passing through a point lying to the right of

the source is, writing r= /27

_ [t Qu (*udy _Q ( :»;)
’sﬁu.zrydy—f4 o Smydy= .J; 5 —5 ;
From this, in accordance with what has been said, the quantity @ must be subtracted, so that
T=9—Q=—1 (1+ ) 16y
For points lying to the left of the source we obtain from the integral

vr--403)

which coincides with formula (16); this holds, then, everywhere,
For the assumed continuous distribution of sources we obtain

v=—3 [0 1+ %) a am
in which r =+ @—8*+3°. To this stream function of the sources must now be added that due
to the paral'-l flow T, = Vi U8

Putting the total stream function ¥, 4 ¥, =¥ equal to zero, gives the equation of the surface

" of the body around which the flow takes place. Putting ¥;+¥,=C gives any other streamline.
1t is evident that, with the same distribution of sources, a whol® group
of body surfaces can be obtained, depending upon the choice of the ratio
of the intensity of the sources to the strength of the parallel flow.

The determinsation is best made practically by graphical methods, for
instance, by laying off the curves z=const. in a system of coordinates
consisting of ¥ and —¥, which can be obtained at once from a calculation
by tables for the stream function ¥,. If we intersect these curves by
parabolas corrcsponding to the equation —¥— Vry*— 0, we obtain at

_once a contour (for ('=o), or some external or internal streamline (for
'>0 or {<o). The parabola may be drawn upon transparent paper, and  ye. 9.—The curves are nr
then by displacing the parabola along the ¥ axis we can at once obtain  diferent values of 2=
from figure 9 the values of y corresponding to any =. oot

In this manner a former colleague of mine, who unfortunately fell immediately at the
beginning of the war, Dr. G. Fuhrmann, calculated the shapes of bodies corresponding to a
series of souxce distributions, and on the one hand he determined the distribution of pressure
over the surface of these bodies by means of the Bernouilli equation (see sec. 4) )

p= ?a { — (U242} ) (19

1 The veloeities 4 and » may be obiained from the polential, but also from the siream function ¥; bfwrw- e % pnd v= —2—y ‘;‘i

13
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and on the other he constructed models aceerding to these drawings and measired the pressure
distribution over them when placed in a wind tunnel. The agreement was altogether surpris-
ingly good, and this success gave us the stimulus to seek further relations between theoretical
hydronamics and practical aeronautics. The work of Fuhrmann was published in Jahr-b.
der Motorluftschiff-Studien Gesellsch., Volume V, 1911-12 (Springer, Berlin}, and contains
a large number of illustrations. Four of the models investigated are shown here. The upper
halves of figures 10 to 13 show the streamlines for a reference system at rest with reference to
the undisturbed air, the lower halves the streamlines for a referance system attached to the
body. The distribution of the source intensities is indicated on the axis. The pressure dis-
tributions are shown in ficures 14 to 17. The calculated pressure disfributions are indicated
by the lines which are drawn full, the individual observed pressures by tiny circles® .

Tt 1s seen that the agreement is very complete; at the rear end, however, there appears a
characteristic deviation in all cases, since the theoretical pressure disiribution reaches the full
dynamical pressure at the point where the flow reunites again, while actually this rise in pres-
sure, owing to the influence of the layer of air retarded by friction, remains close to the surface.

As ig well known there is no resistance for the theoretical flow in a nonviseous fluid. The
actual drag consists of two parts, one resnlting from all the normal forces (pressures) acting
on the surface of the body, the other from all the tangential forces (friction). The pressure
resistance, which in this case can be obtained by integration of the pressure distribution over
the surface of the body, arises in the main from the deviation mentioned at the rear end, and
is, as is known, very small. Fuhrmann’s calculations gave for these resistances a coefficient,
with reference to the volume of the body, as shown in the following table:3

0.4170 40122 0. 0131 0. 0145

Thia eoefficient is obtained from the following formula:
k, U q
where U designates the volume and ¢ the dynamiecal pressure.
The total resistance (drag) was obtained for the four models hy means of the balance;

the difference between the two quantities then furnishes the frictional resistance. The total
drag coefficienis were: *

Drag w, =

D Model..veveeiiriee e,

. | 1 : II puis v

& (248 0. 0243

With greater values of VL than were then available for us, the resistance coefficients
become nearly 30 per cent smaller. For purposes of comparison with other cases it may be
mentioned that the “maximum section’” was about 2/5 of U*®. The surface was about seven
times U'%%; from which can be deduced that the total resistance of the good models was not
greater tha.n the friction of a plane surface having the same area. The theoretical theorem
that in the ideal fluid the resistance is zero receives in this & brilliant confirmation by experiment.

B. THEORY OF LIFT,

13. The phenomena which give rise to the lift of an aerofoil may be studied in the simplest
manner in the case of uniplansr motion. (See sec. 10.) Such a uniplanar flow would be ex-
pected obviously in the case that the wing was unlimited at the sides, therefore was “infinitely

2 In the wind tonnel there was & stail pressure dropin che direction ofits length.,
th & foreé had to bo diminished somewhat and those sit somewhat inoressed,
- 3 After deduetion of the hotizontsl buayancy.

In order to eliminate the efect of this, the pressures toward
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Fi1a. 12, Fig. 13,

Four sirship rodels as derived by Fubrmann by comblnation of sources and unlform flow.  Distributiou of sources indicated on sxls. Upper half:
Streamlines relative to undisturbed sir. Lower half: Streamlines relative 4o aleship.
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F15, 14. Fia. 15

Fro. te. FI6. 17,

Pressura distribotion over alrships of fgnres 10 to 13, Full lines tepresont ealoulated values; small eirdles, points 23 found by observation tna
wind-tunnel.

15



REPORT NATIONAL ADVISORY COMMITTEE FOR ABRONAUTICS.

long,” and throughout exhibited the same profile and the same angle of attack. In this case all
the sections will be alike in all respects and each one can be considered as a plane of symmetry.
The mﬁmtely long wing plays an important part therefore in the considerations of the theoretical
student. It is not possible to realize it in free air, and marked deviations from the infinitely
long wing are shown even with very long wings, e. g., those having an aspeect ratio of 1:10. In
Izboratories, however, the infivitely long wing, or uniplanar flow, may be secured with good
approximation, if o wing having a constant profile is placed hetween plane walls in a wind
tunnel, the walls running the full height of the air stream. In this case the wing must extend
close to the walls; there must be no gap through which a sensible amount of air can flow, We will
now discuss such experiments, and first we shall state the funda-
mental theory of ump]anar flow.,

Since, as explained in section 4, in a previously undisturbed
fluid flow, the sum. of the static and dynamic pressures is con-

stant: p+§V“=c0nst., in order to produce lift, for which the

_ pressure below the surface must be increased and that above
diminished, such arrangements mist be made as will diminish
the velocity below the wing and inerease it above. The other
method of producing such pressurs differences, namely, by

Flo. 18—Deduction of the Kutts formula, CAUSINg & VoTtex Tegion above the surface placed Ivie a kite
- wniplanar flow sronnd infinite wing. oblique to the wind, by which a suction is produced, dees not

come under discussion in practical aeronautics owing to the great resistance it setsup. - Lanchester

has already called attention to the fact that this lifting current around the wing arises if there is
superimposed upon a simple potential flow a eirculating flow which on the pressure side runs

against the main current and on the suction side with it. Kutta (1002) and Joukowski (1906)

proved, independently of each other, the theorem that the lift for the length { of the wing is

=pT' VI (20)

in which I is the circulation of the supemmpoaed flow. It may be concluded from this formula
that in a steady fluid flow lift is not possible unless there is motion giving rise to & circulation.
In uniplanar flow in an ideal fluid this lift does not entail
any drag.

The proof of the Kutta-Joukowski formuls is generally
deduced by applying the momentum theorem to & circular
cylinder of large radius whose.axis is the medial line of the
wing. The circulatory motion, which could be obtained
numerically close to the wing only by elaborate mathematicsl
processes, 18 reduced at a great distance from the wing to a
meotion which agrees exactly with the flow around a rectilinear
vortex filament (see sec. 8), in which, therefore, the single rc. 15.—Uniplanar unibon fow around dr:
particles describe concentric circles. The veélocity around a eniar eylinder.

circle of radius K 1s, then, v—-Q—:E' For an element of surface {, Rd# (see fig. 18) the normal

component of the velocity is V¥ cos 8, the mass flowing through per second dm=pIRV cos 6d8.

- If we wish to apply the momentum theorem for the vertical components, i. e., those perpen-

dicular to the direction of V, then this component of the velocity through the element of surface
must be taken. This, obviously, is v cos 6, taken positive if directed downward; the total
impulse, then, is :

J = v cos odm=pIR vaﬁw cos? 8d6.

The integral equals x, and therefore introducing the value 6f »
J=% VL.
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Since the resulting impulse is directed downiward (the upward velocity in front of the wing is
changed into a downward one behind the wing), this means that the reaction of the finid against
the wing is a lift of the wing upward. The amount of the impulse furnishes, as is seen by re-
ferring to formuls (20), only half the lift. The other half comes from the pressure differences
on the eontrol surfaces. Since, for g sufficiently large B, » can always he considered small com-

pared with ¥, neglecting § %, the pressure p is given, according to the ernouilli equation, by

p=pe+ pV’——{(V+'vsml9"‘+v’ cos® ¢ } =Zpy—pV sin g,

A component of this, obtained by multaplymg by sin 8, acts vertically on the surface element
1Rd4. Theresulting force Dis, then, .

D=plR Vo[, sin ods.
This integral also equals , so that hers also

D_é o VTI

its direction is vertically up. The total lift, then, is
A=J+D=pTT.

14. For the more accurate analysis of the flow around wings the complex functions (see
sec. 10) have been applied with great suceess, following the procedure of Kutta. Very different

Fiz. 20.—Uniplanar fiow areond sireglar F‘r}, 9. —Ruperpasttion of two proceding
eylinder comsidered as & colutunsr vottex Hows,
of strength T

metheds have been used. Here we shall calculate only one specially simple case, in which the
flow will be deduced first around a circular cylinder and then caleylated for' s wing profile by a
transformation of the eireular eylinder and its flow, using complex functions.

The flow around a circular cylinder has long been known. If the coordinates in the plane
of the circle are p and ¢, and if we write p+ig={, the potential and stream functions for the
ordinary symmetrical flow around the circular cylinder are given by the very simple formula

. a?
&+l = V(H— ?)“ {21)

It is essily seen by passing to polar eoordinates that, for r=q, ¢, =0, and that therefore the
cirele of radius ¢ is a streamline. Further, for the p axis, ¥, =0, 1. e., this is also a streamline.
The whole flow is that shown in figure 19, To this flow must be added the circulation flow
expressed by the formula

. iT. '
P +il,= 5 fog t® (22)
which, as shown in figure 20, is simply a flow in concentric circles with the velocity —2—:;‘. The

combination of the two flows, i. e., the flow for the sum of the expressions in equations (21)
and {22), is shown in figure 21. It is seen that the rest point is moved down an amount de.
By a suitable choice of the circulation this can be brought to any desired point.

ig-{—?-(r-{-g) o0 4§ (f-“i;) sin & t;ilog Fma—d 4 log ¥,
20167 —23-——-12
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We must now discuss the transformation of this flow to a wing profile.  For this purpose
manifold means are possible. The simplest is furnished by a transformation according to the
equation

' S b*
z=p+y=t +'t_'
By this the circle of diameter 4B =25 in the ¢ plane (as we shall for brevity’s sake call the p, ¢

plane) is transformed into a straight line 4’ B” of the length 4b along the X axis, and concen-

g, 22. . FIG’. 23,
Conformal transformation of 2 plane into £ plane by zmt+ = i

tric circles around the former become ellipses, the radii become hyperbolas, All the ellipses
and hyperbolas have their foci at the ends of the straight line, this forming a confoeal system.
Figures 22 and 23 illustrate the transformation. It may be mentioned, in addition, that the
interior of the circle in figure.22 corresponds to a continuation of the meshwork in figure 23
through the slit A’ B, whose form agrees with the meshwork as drawn. Any circle through
the points AB is thereby fransformed into an arc of

:—\ a circle passed over twice, having an angle subtended
__ at the center equal to 48.

Many different results may now be obtained by

means of this mapping, according to the position
which the circle, around which the flow takes place

according to equations (21) and (22), bears to the di-

ameter .48 of the circle of figure 22.  If the diameter

AB ismade to coincide with any oblique diameter of

the circular section of the cylinder, we obiain a flow

S —— —  around an oblique plate whose angle of attack coin-

. cides with the inclination of the line AR, If the di-
ameter AB is selected somewhat smaller, so that both points lie inside the circle symmetrically
on the diameter, the flow around ellipses is obtained. If, however, the diameter AB coincides
with a chord of the cirele around which the original flow wag, which, for example, may lis below
the center, the flow around a curved plate forming an arc of a circle is obtained. By selection
of various points in the interior of the original circle forms of diverse shapes are obtained, The

recognition of the fact that among these forms very beautiful winglike profiles may be found we

18
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owe to Joukowski. These are obtained if the point B is selected on the boundary of the original
circle and the point 4 inside, and somewhat below the diameter through the point B. Figure
24 gives illustrations of such Joukowski profiles.

In order that the flow may be like the actual one, in the cases mentioned the circulation
must always be so chosen that the rear rest
point coincides with the point B, or, re- — e S
spectively, with the point én the original

circle which lies nearest this peint. In %

this case there will be, after mapping on

the z plane, a smooth flow away from the —/,_\_
trailing edge, as is observed in practice. It _
is therefore seen that the circulation must ————— T

be taken greater according as the angle of

_—“_\—_—_’_‘_
attack 1s greater, which agrees with the ob- - e -
—_—

servation that the lift increases with increas-
ing angle of attack.

The transformation of the flows shown
in figures 19 fo 21 inte wing profiles gives
illustrations of streamlines as shown in figures 25 to 27—~fgure 25, simple potentisl flow;
figure 26, circulation flow; figure 27, the aetual flow around a wing obtained by superposition
of the two previous flows.

We are, accordingly, by the help of such constructions, in the position of being able to

calculate the velocity at every point in the
neighborhood of the wing profile, and with it

the pressure. In particular, the distribution

- of pressure over the wing itself may be cal-
culated. :

W My assistant, Dr. A. Betz, in the year

1914 worked out the pressure distributioh for

a Joukowski wing profile, for a series of angles

/ of attack, and then in a wind tunnel mesas-

ured the pressure distribution on a hollow

model of such a wing made of sheet metal,

side walls of the height of the tunnel being

F15. Zi-=Transformation of circulatory ﬂavf'_. figurs 2. introduced so as to secure uniplanar flow

The results of the measurements agreed in o very satisfactory manmer with the caleulations,

only—as eould be well explained as due to frictton—the aetual circulation was always clightly

less than that calculated for the same angle of attack. If the pressure distributions would
be compared, not for the same angles of
abtack, but for the same amouht of circu-

/"'—\‘—""""‘\-
lation, the agreement would be noticeably m
better. The pressure distributions ‘are m

‘shown in figures 28 to 30, in which again .
the full curves correspond to the measure- //////////////}/ﬂ//# X

ments and the dashes to the calculatéd -////,,,"
pressures. Lift and drag for the wing -
were also obtained by the wind-tunnel bal-
ance. In order to do this, the middle part /__,__)_\
of the wing was isolated from the side parts, :

which were fastened to the walls of the tun- PR -_

nel by carefully designed labyrinths, so that
within a small range it could move without
friction. The result of the experiment is shown in figure 31. The theoretical drag is zero, that
obtained by measurement is very small for that region where the wing is “good,” but sensibly
larger for too large and too small angles of attack. Thelift is correspondingly in agreement

|

F15. 25—Transformalion ol simple potential flow, figure 19,

Fro, 27.—Transhrmalion of superposition of the twe flows, fignre 31.
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with the theoretical value in the good region, only everywhere somewhat lass. The deviations
of drag as well as of lift are to be explained by the influence of the viscosity of the fluid. The
agroement on the whole is as good aa can be expected from a theory which neglects completely
the viscosity.

For the connection between the angle of incidence a and the circulation which results from
the condition discussed above calculations give the following result for the lift:

(1) The Kutta theory gives for the thin plane
plate the formula '

A=bt5p¥* sin « {23)
The lift coefficient £, is defined by the equation

53— T

Cac?% where q=% oV

and therefore
O, =27 sin o (24)

(2) For the circularly curved plates having an
angle of arc 48 subtended at the center (see figure 23)
we have, according to Kutta, if « is the angle of
attack of the chord,

sin (o+28)

03=2'ﬂ' 0033

(28)

which, for small curvatures, becomes 27 sin (a+8);
this can be expressed by saying that the lift of the
ciroularly curved plate is the saine as that of a plane
—_ which touches the former at a point three-fourths of
the distance around the are from its leading edge.

Iiva For the Joukowski profiles and for others the
fe—- formulas are less simple. v. Mises showed in 1917
} that the inerease of ¢, with the angle of attack, i. ¢.,

i

‘%, is greater for all other profiles than for the fiat

plate, and is the greater the thicker the profile. But

the differences are not marked for the profiles occur-
ring in practice.

The movement of the center of pressure has

[ also been investigated theoretically. With the

[ plane plate, in the region of small angles, it always

i lies at one-fourth of the width of the plate; with

circularly curved thin plates its position for small

]L{ angles is given by the following law:

¢

¥la. 30. Ty=

tan ¢«

T4 tan a-+tan §
Pressyrae distribution over a Joukowski wing, diffevent anglesof . . . . .
atback, Full lines give resuits of wind-tunnel tests; dasnea N Which ¢ is the chord of the plate, and x, is the dis-

lines, calculated valuss, tance measured from the center of the plate. The
fact, that the movement of the center of pressure in the case of “good” angles of attack of the
profiles agrees with theory is proved by the agreement of the actual pressure distribution with
that calculated. In the case of thin plates s less satisfactory agreement as respects pressurs
distribution is to be expected because with them in practice there is a formation of vortices at
the sharp leading edges, while theory must assume a smooth flow at this edge.

(26)

15. That a circulatory motion is essentisl for the production of lift of an aerofoil is defi-
nitely established. The question then is how to reconcile this fact with the propesition that
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the circulation around a fluid line in a nonviscous fluid remains constant. If, before the motion
begins, we draw a closed line around the wing, then, so long as everything is at rest, the circula-
tion certainly is zero. Even when the motion begins, it ¢an not change for this ine. The ex-
planation of why, in sptte of this, the wing geins cireulation is this: At the first moment of the
motion there is still no circulation present, the motion takes place approximately according to
figure 25, there is a flow at high velocity around the ; :
trailing edge. (Seesec. 10.) This motion can not, how- ‘ »’ '
ever, continue; there is instantly formed st the trailing ;f /] —\\
edge a vortex of increasing intensity, whieh, in accord. i f /" A

¥

&

ence with the Helmholtz theorem that the vortex is /
always made up of the same fluid particles, remains with 12—
the fluid s it passes on. (See fig. 32.) The circulation Ca /
around the wing and vortex, taken fogether, remsins ol N\,c
equal to zero; there remains then around the wing a cir- $
culation equal and opposite to that of the vortex which / @f
has gone off with the current. Therefore vortices will & (
be given off until the circulation around the wing is of -
such a strength as to make the fluid flow off smoothly 106

from the trailing edge. If by some alteration of the 19 / !
angle of attack the condition for smooth flow is dis- /

turbed, vortices are again given off until the circulation /
reaches its new value. These phenomensa are eom- ! ) .
pleted in & compazratively short distance, so the full Lift 7 o215 LA

is developed very quickly.
In the pictures of flow around a wing, e. g., figure 27, 7
one sees that the air in front of the wing flows upward /
against the reaction of the lift. The consideration of / 2
momentum has shown that half of the impulse is due to | _ | J
the oncoming ascending current. This fact needs some
further explanation. The best answeris that given by
Lanchester,” who shows that for the production of lift 16 3.—Valuesofliland drag coelticientsols Joukov ski
the air mass at any time below the wing must be given wing a5 abinined In wind-tuninel sts avd by theoey:
an acceleration downward. The question he asks is: What kind of a motion arises if for & short
time the air below the wing is accelerated downward, then the wing is moved forward a bit
without pressure, then the air is again accelerated, and so on? The space distribution of the
acceleratlons is known for the case of a plane plate, infinitely extended at the sides, accelerated

st
5°

e g

e X

e ————— e from rest;- the pattern of the accelera-

- H‘\\ e ™ tion direction is given in figure 33. It

// \I/ \\ is seen that above and below the plate

/ , v the acceleration is downward, in front
‘i( /////// ////7/////// ,} ‘i of and behind the plate it is upward
\ ! :,’ opposite to the acceleration of the
' \\ x*\ / plate, since the air 15 escaping from
N N // the plate. Lanchester asks now about
VO S the velocities which arise from the
P16, 32—Production of tirculation atound a wing due fo vorilces learing tralling  origitial umniform velocity relative to
sdar: the plate owing to the fact that the

plate, while it gives rige to the aceelerations as shown in figure 33, gradually comes nearer the

air particle considered, passes by it, and finally again moves forward away from it. The pie-

ture of the velocities and streamlines which Lanchester obtained in this way and reproduced
in his book was, independently of him, calculated exactly by Kutta. It is reproduced in figure
34. It is seen that as the result of the upward accelerations of the flow away from the wing

¥ Aerodynatndea 1, § 110-118.
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there is an upward velocity in front of the plate, a uniform downward acceleration at the plate
itself due to which the upward velocity is changed into a downward one, and finally behind the
plate a gradual decrease of the downward velocity on account of the acceleration wpward.

C. THE FINITE WING.

18. It has been known for 2 long time that the aspeet ratio of an aerofoil had a great effect
on its properties. One could therefore have expected that, on account of the vanishing of
pressure at the side edges, the intensity of the lift must decrease toward the edge, so that its

average value for the same angle of attack must be smaller for small valves

N\WLA of the aspect ratio than for large ones. But the observed influence of aspect

! @)I{@ }  ratios is sensibly greater than could be explained in this way. We must

/AN therefore investigate whether an explanation of this phenomenon can be found,

Fis. M—Acceleration  H we apply to the finite acrofoil in some proper manner the results which are

diagram  around  an :
ifnitely long fey  ENOWR to hold for uniplanar flow.

plate sceelerated st It is easily seen that vortices in the free fuid must here be token into
mehe angle fo ltssur aocount.  For it is certain that circulation is present around the middle of

the wing, because no lift is possible without circulation. If s closed line
drawn around the middle of the wing, around which, therefore, there is circulation, is displaced
sideways over the end of a wing, it will certainly no longer show circulation here when it is
beyond the wing. From. the theorem that the circulation along a closed line only changes
if it cuts vortex filaments, and that the amount of the change of the circulation equals the
gum of the strengths of the vortex filaments cut {see sec. 8), we must conclude that from each’
half of & wing vortex filaments whose strengths add up to I must proceed, which are concen-
trated mainly near the ends of the wing. According to the Helm- o
holtz theorem we know further that every vortex producedinthe —_ _  _—————_ =~
fluid continues to move with the same fluid particles. We may _ " T __
lock upon the velocities produced by the wing as small compared T T
with the flight velocity V, so that as an approximation we may —_— T
assume that the vortices move away from the wing backwards
with the rectilinear velocity V. (If it is wished, we can also im- : )
prove the considerations based upon such an sssumption if the ™ S—Sfmine some ity
motion of the vortices of themselves relative to the airis taken into
account, This will, however, be seen to be unnecessary for practical spplications of the theory.)

In order now to obtain the simplest possible scheme, we shall assume that the lift is uni-
formly distributed over the wing; then the total circulation will arise only st the emds, and
continue rearwards as free vortices. The velocity field of an infinitely long wing, as we saw,

was the same at great distances as that of a rectilinear vortex
2] filament instead of the wing. We shall assume that the corre-
U sponding statement holds for the finite wing. We thus obtain,
for the velodity field around s finite wing, a picture which is
somewhat crude, it is true, if we take for it the velocity distri-
bution due to a vortex filament of corresponding shape.

It may be mentioned here that, on account of there being

the same laws for the velocity field of a vortex filament and the

o35 A eite WU . magnetic _ﬁeld‘of an electric current (see sec. 8)} the velocity

T ot el e v U near a finite wing cen also be investigated numerically by cal-

culating the direction and intensity of the magnetic field pre-

duced near an electrical conductor shaped as shown in figure 35 due to an electrical current
flowing in it.

The principles for the calculation of this velocity field have been stated in section 8; the
total velocity is made up out of three partial velocities which are caused by the three rectilinear
vortex portions. As is seen without difficulty, for the region between the vortices the flow is
downward, outside it is upward.

A
2

7
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17, This approximation theorem is specially convenient if the conditions at great distances
[rom the wing are treated. With its help we can explain how the weight of an airplane is
_transferred to the ground. In order to make the flow satisfy the condition that at the ground
components of velocity normal to it are impossible, we apply a concept taken from other
branches of physics and superimpose the condition of an image of the airplane, taking the earth
as the mirror. On aceount of symmetry, then, all velocity components normal to the earth’s
surface will vanish. If we use as our system of coordinates one attached to the airplane, we
have then the case of stationary motion. If we take the X axis in the direction of the span
of the wing, the ¥ axis horizontal in the direction of flight and the Z axis vertically down,
and if u, v, w are the components of the additional velocity due to the vortices, then calllng
po the undisturbed pressure and p’ the pres-
sure difference from p,, and neglecting the
weight of the air, Bernouilli’s equation gives us

P0+'P”"% [w2+ (o— V)z+w2]=2}o+..%|72

If this is eipanded and if «2, v*, and w? are
neglected as being small of a higher order, there
remains the simple equation

P =p Vo ©@7)

For the determination of the pressure dis-
iribution on the ground we must now calculate
the value of v. Let us assume the vortices
run off the wing in an exactly horizontal dires-
tion {actually, their path melines downward
slightly}, in which case they do not contribute
tow. There remaing then only the “ transverse
vortex’ of the length I (effective span) and
the circulation T. We will assume that the
gpan of the wing is small in comparison with
the distance 4 of the airplane from the ground.
In that case we can trest the transverse vortex
as if it were a single vortex element. We ob- Fi 36, —Application o[metmuo‘:;r;lagcs to airplane Aymg near the
tain, then—see figure 36—at a point 4, with s
the coordinates # and y, & velocity perpendicular to the plane ABF, of the amount

sin o
4 R?

The image of the airplarte furnishes an equal amount perpendicular to the plane ABF”
If g is the angle between the plane ABF and the XY plane, then the actual velocity at the

ground, as far as it is due to the transverse vortex, will be the resultant of v, and v,. It is there-
€ .

fore v =20, sin 8, or, if we write sin a=%’ sin g= }% (see fig. 36)

=Tl

- 51“_1.% 28)

If wo take into account the fact that, aceording to the Kutta-Joukowski formula (20),
p T Vi=A, equations (27) and (28} lead to the relation

4% '
Pga (20)

If this is integrated over the whole infinite ground surface, it is seen that the resultant
force due to the pressures on the ground has exactly the amount 4. It is thus proved that the
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pressure distribution due fo the circulation motion transfers to the ground exactly the weigh

«of the airplane. The distribution of the pressure, which according to formula (29) is axially

symmetrical with reference to the foot of the vertical line drawn from the airplane, is shown in
figure 37. The pressure maximum is pFﬁ- Its amount, even for low heights of flight, is

very small, since the surface over which the pressure is distributed is very large.

18. Applications of an entirely different kind may be made of the velocity field which belongs
to the vortex of figure 35. For instance, an estimate may be made as to the magnitude of the
downward velocity component at any point of the tail surfaces, and in, this manner the influence
of the wings npon the tail surfaces may be calculated. If in accordance with the Kutta-
Joukowski formula the lift is written 4 —pP VY, in which, taking account of the fact that a

Fi6. 3T —Distribution of pressure on groond caysed by airplane fiying near it.

portion of the vortices flow off within the ends of the wing, I, can be taken somewhat less than
the actual span b, then at a distance ¢, behind the wing, the velocity component downward is

w=2£‘§‘(1+§)+%£§=}%(1+§> (30)

in which a=\/(%)2+d*. |

If the flight velocity is V| this gives for the inclination of the downward sloping air-carrent
tan ¢~=%- We proved this relation in the year 1911 and found an approximate agreement

with ehservation.

The principle made use of above has heen applied with profit to the caleulation of the
influence of one wing of a biplane upon the other wing and has given a method for the calcula-
tion of the properties of a biplane from the properties of a single wing as found by experiments.
The fundamental idea, which is always applied in such calculations, is that, owing to the vortex
system of one wing, the velocity field near the wing is disturbed, and it is assumed that a wing
experiences the same 1ift as in an undisturbed air stream if it cuts the streamlines of the fow
disturbed by the other wing in the same manner as a monoplane wing cuts the straight stream-
lines of the undisturbed flow. As is easily seen, the wing profile must in general be slightly
turned and its curvature slightly altered, as is shown in figures 38 and 39. By the rotatien of
the wing the direction of the resultant air force acting on it is furned through an equal angle.
If the magnitude of the velocity as well as its direction is also changed, this must be expressed:
by a corresponding change in the resultant air force.
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- As an illustration we will treat briefly the case of a biplane without stagger. The most
important component of the disturbance velocity w is again the vertical one; in the plane of
the mean lift lines of the biplane it is affected only by the pair of vortices running off the wings,
since the transverse vortex of one wing causes only an increase (or decreass) of the velocity of
flow at the other wing., - We are concerned here only with the calculation of that downward
disturbance velocity due to the vortices from the wing not under investigation, since the other
vortex system. is present with the monoplane and its influence has already been taken into
account in the experiments on a monoplane. '

The total velocity due to a portion of a vortex proceeding to infinity in one direction, in
the plane perpendicular te the vortex at its end, is, as may be deduced easily from the formu]a
in section 8, exactly half of the eorresponding velocity in the neighborhood of a rectilinear
vortex filament extending to infinity in both directions. This can also be easily seen from the

fact that two vortex filaments, each extend-
ing to infinity in only one direction—but
oppositely.in the two cases—form, if com-
bined, a singlefilament extending to infinity
in both directions. The total velocity
~caused ab the pomt P by the vortex 4, _ i

see figure 40, is 51+ where 7= Ve 07 its

vertical component ia

I
|
|
1{A
|
y

WL
T e

”,/ ey,

I, =
Ly T15. 3.
The vertical component due to the /
vortex B is | /
=T L3 -
P gy’ T [

where ' = (G —2) + A%
Therefore the vertical component due
to both vortices is

I' /s  L—=
i (5 @1
If we assume that the lift is uniformiy
distributed over the effective span I,, which
again we shall take as somewhat less than

the actual span, then, since every element of
the wing must be turned through the angle

b

ST

f/{' e,
L2
iy

¢ according to the formula tan p=% the

direction of the air foree must be furned
algo, which means a negligible change in
the lift, but an increase in the drag of this
wing which must be taken inte account.

It is essential then in this caleulation that we pass frem a condition for a monoplane to
one in which the wing when part of a biplane has the same lift as when considered as a mono-
plane. The angle of attack for which this condition will arise can be estlmated afterwards
from the average of the angles . :

TG, 39,

Influenea of one wing of a biplane upeno the other; rotatlon of wing profile,
alterabion of its curvature.

19. The contribution of vortex A to the increase of the drag of the upper wing in ﬁgure 40
is evidently

In
4, T fade A
=2
L=V}, 1T,

Y

I ¥
wr= de vlosy
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Ths contribution of vortex B is, by symmetry, the same, In accerdance with equation (20),
we can put I‘=%'f, and thus obtain for the increase of the drag of the upper wing
1

A, A4, log r,jr,
W= Ll 2mp V¢ (82)
By the symbol W,, is meant that it is the drag produced by wing 1 upon wing 2. One can
convince himself easily that the drag W,, which wing 2 produces upon wing 1 has the same
magnitude, Therefore the total increase of drag due to the fact that two monop]anes which
produce the lifts 4, and 4, are combined to form a biplane, the two lifts remaining unchanged
(the angles of incidence of course being changed), is

4,4
Wot+ W, =2 m==2‘ﬁ‘—l,3@ lOg:.‘% (33)

in which, as always g-% pV2Y

Upon the ehange in the msagnitude of the veloeity, which in accordance with the approxi-
mation used depends only upon the disturbance velocity v in the direction of flight, only the
transverse vortex of the other wing has. an influence. For

\ Lo 5,4 ., any point this influence, aceording to our formula, is given by
- ak] ! :
' x Z z

7 ‘ 415( ) (34_)

> | or in which 7 and #' have the same meaning as before. The
AE ad \:3 upper wing experiences due to the lower an increase in veloe-
D ) { ity, the lower one experiences due to the upper a decrease in

J velocity, to which correspond, respectively, an increase or a
Fia. dh=-Velooley ot b polut  due to theiip  decrease in lift as shown by the usual formule. If we wish to
' keep the lifts unchanged, as required iu the treatment given
above, it is necessary to change the angles of attack correspondingly.
The effective change in the curvature® of the wing profile will, for simplicity’s sake, be .

diseussed here only for the medial plane of the biplane, i. e., for m—g- It is obtained in the
simplest manner by differentiating the angle of inclination of the air current disturbed by the

other wing, which is, remembering that ten ¢="T*§,

R & (tan 3) %ﬁ;f’ _ (35)

Outside of the vertical plane, owing to the disturbing wing, three vortices contribute to
the magnitude of w. A side vortex contributes, at a point at the height % and the distance y

in front of the transverse plane, 2 ve]dcit.y »" perpendicular to 7’/ of the amount 4%(1 —%)’

Ty ¥y _ Tl ¥
?a(l‘?)-sm 1-7

The transverse voriex contributes

and therefore its share of w is

in which the meaning of +'’ and r"”' may be seen from figure 41. The total w« is, accordingly,

Ti/1
w=2w1+w==¥;(?_,z_r_zgﬁ"'?l‘ngﬁi)

* The mutusl actieon of two wings placed side by side can also be caleulated from the considerations stated above, and resudts in a decrease of
thedrag. Thisdecressels of & slnilar kind to that which arisesin the theoty of 2 monsplane by an incresse in the aspect ratio,

¥ By change in curvature of the wing is meant that if the Aow were to be kept straight and the curvature changed, the forces on the wing would
be ohanged exactly as they are on the actusl wing owing to the change lu the fow.—Tr.
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The differential of this with reference to ¥, for the value of y=o, is, since then r**==¢ and

T} ' = h
(dyo) 4"5 7 jl‘ )
—_—— et e

the curvature sought is, then, according to equation (35},

1T 41,1
257 5 5) @6)
Calculations of the preceding nature were made in 1912 by my assistant, A. Beta, so as
to compare experiments with monoplanes and biplanes and to study the influence of different
sngles of attack and different degrees of stagger of the two wings of a biplane upon each other.
The influence upon the drag was not known to us at that time, and the caleulation was carried
out 50 as to obtain the changes in the lift due to w, to » ard to the curvature of the streamlines.
In this connection the change of the lift of a monoplane when flying near the earth’s surface
was also deduced, by calculating the influence of the “mirrored wing®’ exactly as was that of
the other wing of a biplane. All that was necessary was to change some algebraic signs,
becanse the mirrored wing had negative lift. The theory-of these
calculations was given by Betz in the Z. F. M., 1014, page 253.
The results of the theory of Betz, from a more modern
- standpoint, such as adopted here, were given i the Tech-
nische Berichte, volume I, page 103 et seq. There one can
find the discussion requisite for the treatment of the -most
general case of a biplane having different spans of the iwo
wings and with any stagger. In the case of great stagger

. . ., = Fig, $1—Curvature of wing-profile a6
it appears, for example, that the forward wing is in an ascend- 15 middle paint due to veloolties

ing air current caused by the rear wing; the latter iz in an . tansed by transverseand p vottices,
intensified descending eurrent due to tho forward wing and the vortices flowing off from it.
Corresponding to this, if the angle of attack is unchanged, the lift of the forward wing is

. X . I .
increased, and that of the rear one weskened; at the same time the ratio ‘E?i;g eXxperiences a

decrease for the forward wing and a marked increase for the rear one.

For a wing in the neighborhood of the ground, ewing to the influence of v there is a decrease
of lift, and conversely there is an increase of lift dus to the influence of w, provided the angle
of attack is kept constant, but as the result an evident decrease in the ratio ]ﬁ;% Owing to
this last it is seen why in the early days of aeronautics many machines could fly only near the
ground and could not rise far from it. Their low-powered engines were strong enough to over-
come the diminished drag near the ground but not that in free air.

D. TEEORY OF THE MONOFLANE,

20. If we extend the principles, which up to this point have been applied to the influence
of one wing upon another, to the effect upon a sinple wing of its own vortices, it can be said in
advance tilat one would expeet to find in that case effects similar to those ghown in the influence
of one wing of a biplane npon the other, i. e., the existence of lift presupposes a descending
flow in the neighborhood of the wing, owing te which the angle of attack is mada greater and
the drag is increased, both the more se the closer to the middle the vortices flowing off at
the ends are, i. e., the smaller the aspect ratio is. One might propose to apply the theory pre-
viously given for biplanes by making in the formulas of this theory the gap equal to zero. Apart
from the fact that the formulas developed do not hold for the immediate neighborhood of the
vortex-producing wing, but must be replaced by more accurate.ones, this certainly is not the
proper path to follow, for, in the earlier trestment, we have taken the undisturbed monoplane
as the object with which other cases are to he compared and have asked what drag, what change
in angle of attack, etc., are caused by adding a second wing to this monoplane. - To proceed
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according to the same method, we must seek for the theory of monoplanes another suitable
object of comparison. As such, the infinitely long wing will serve. Where the diseussion
previously was about change of angle of attack, increase of drag, ete., we intend now to refer
thege to the infinitely long wing as a starting pomt. Sinee in the theoretical nonvigcous fow
the infinitely long wing experiences no drag, the total drag of such a wing in such a fluid must
be due to vortices amenable to our calculations, as the following treatment will show. In a
viscous fluid drag will arise for both wings; inﬁnite]y long or not, which for those angles of
attack for which the profile is said to be “'good” is, according to the results of experiment, of the
order of magnitude of the frictional resistance of a plane surface.

The earrying out of this problem is accompanied with greater difficulties than the calcula-
tion for a biplane as given. In order to obtain the necessary assistance for the solution of the
problem, we shall first be obliged to iraprove the accuracy of our picture of the vortex system.

The density of the lift (lift per unit length) is not constant over the whole span, but in
general falls off gradually from a maximum at the middle nearly to zero al the ends. In ac-
cordance with what has been proved, there. corresponds to this a circulation decreasing from
within outward. Thercfore, according to the theorem that by the displacement of the closed

curve the eireulation I' can change only if a corresponding quantity of vortex filaments are cut,
we must assume that vortex filaments proceed off from the trailing edge wherever I' changes.

For a portion of this edge of length dx the vortex strength is therefore to be written %& dz, and
hence per unit length of the
odge is g These vortex fila-

ments flowing off, closely side .
by side, form, taken as a whols, .
a surface-like figure, which we
shall call a “‘vortex ribbon.”

For an understanding of
this vortex ribbon we can also
-approach the subject from an
entirely different side. Let us consider the flow in the immediate neighborhood of the surface of
the wing. Since the excess in pressure below the wing and the depression above it must vanish
as one goes beyond the side edges of the wing in any manner, there must be a fall in pressure near
these edges, which is directed outward on the lower side of the wing and inward on the upper.
The oncoming flow, under the action of this pressure drop, while it passes along the wing, will
receive on the lower side an additional component outward, on the upper side, one inward,
which does not vanish later. If we assume that at the trailing edge the flow is completely
closed again, as is the case in nonviscous flow, we will therefore have a difference in direction
between the upper and lower flow; the upper one has a relative velocity inward with reference
to the lower one, and this is perpendicular to the mean velocity, since on account of the Ber-
nouilli equation in the absence of a pressure difference between the two layers the numerical
values of their velocities must be the same. This relative velocity of the two flows is exactly
the result of the surface distribution of vortices mentioned above (as the vortex theory proves,
a surface distribution of vortices always means a discontinuity of velocity between the regions
lying on the two sides of the surface). The relative velocity is the greater, the greater the side-
wise pressure drop, i e., the greater the sidewise change in lift. The picture thus obtained
agrees in all respects with the former one.

21. The strengths of our vortex ribbon remsain unchanged during the whole flight, yet
the separate parts of the ribbon influence each other; and there takes place, somewhat as is
shown in figure 42, a gradusl roiling up of the ribbon, as a closer examination proves. An
axact theoretical investigation of this phenomencn is not possible at this time; it ean only be
asid that the two halves of the vortex ribbon become concentrated more and more, and that
finally at great distances from the wing there remain a pair of vortices with rather weak eores.

¥1q. 42,—Chgpge it shepe of vortex ribbons at greet distances behiand the wing.
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For the practical problem, which chiefly concerns us, namely, to study the reaction of the
vortices upon the wing, it is not necessary to know these changes going on at a great distance,
for the parts of the vortex system nearest the wing will exercise the greatest influence. We
shall therefore not consider the gradual transformation of the vortex ribbon, and, in order to
make the matter quite simple, we shall make the calculation as if all the vortex filaments were
running off hehind in straight lines opposite to the direction of flight. It will be seen that,
with this assumption, the calculations may be carried out and that they furnish a theory of
the monoplane which is very useful and capable of giving assistance in various ways,

If we wish to establish the method referred to with greater mathematical rigor, we ean
proceed as follows: Since the complete problem is to be developed taking into acecount all eir-
cumstances, we shall limit ourselves to the case of a very small lift and shall systematicaily
carry through all calculations in such a manner that only the lowest power of the lift is retained,
all higher powers being neglected. The motion of the vortex ribbon itself is proportional to
the total circulation, therefore alse proportional to the lift; it is therefore small if the lift is
small. If the velocities caused by the vortex ribbon are calculated, first for the ribbon in its
actual form, then for the ribbon simplified in the manner mentioned, the difference for the two
distributions will be small compared with the values of the velocity, therefore small of the
second order, i. e., small as the square of the circulation. We shall therefore neglect the differ-
ence. Considerations of this kind are capable of deciding in every case what actions should be
taken into account and what ones may be neglected. * By our simplifications we have therefore
made the problem linear, as a mathematician says, and by this fact we have made its solution
possible. It must be considered a specially fortunate circumstance that, even with the greatest
values of the lift that actually oceur with the usual aspect ratios, the independent motion of the
vortex ribbon is still fairly small, so that, in the sense of this theory, all lifts which are met in
practice may still be regarded as small. For surfaces having large chords, as, for instance, a
square, this no longer holds. In this case there are, in addition, other reasons which prove
that our theory is no longer sufficiently accurate. This will be shown in the next paragraph.

Tt has already been mentioned that the infinitely long wing will serve as an object of com-
parison for the theory of the monoplane. We shall formulate this now more exactly by saying:
Every separate section of the wing of length dz shall bear the same relation to the modified flow
due to the vortex system as does & corresponding element of an infinitely long wing to the recti-

linear flow. The additional velocities caused by the vortex system vary from place to place

and also vary in the direction of the chord of the wing, so that again we have to do with an
influence of curvature. This influence is in practice not, very great and will for the sake of

stmplicity be neglected. This is specially allowable with wings whose chords are small in

comparison with their spans, i. e., with those of large aspect ratio. If one wishes to express
with mathematical exactness this simplifying assumption, it can be said that the theory of an
sctual wing of finite chord is not developed, but rather that of a “lifting line.” It is clear
that a wing of aspect ratio 1:6'may be approximated by a lifting line, specially if one considers
that actually the 1ift is concentrated for the greatest part in a region nearer the leading edge.
It is easily seen, however, that a surface in the form of a square can be approximated only
poorly by a lifting line.

If we assume a straight lifting line, which lies in a plane perpendicular to the direction
of flight, the flow due to the vortices, which according to the Biot-Sarvart law, is caused by its
own elements, will not produce any velocities at the lifting line itself except the cireulation
flow around it, which would also be present for an infinitely long lifting line having the same
circulation as at the point observed. All disturbance velocities at a point of the lifting line,
which are to be looked upon as deviations from the infinitely long lifting line, are due therefore
to the vortices which run off and hence can be caleulated easily by an integration.

A qualitative consideration of the distribution to be expected for the disturbance velocities
along our lifting line shows at once that—just as was the case for a biplane—the chief thing is the
production of & descending current of air by the vortices. If we wish to retain the lift of the
same intensity as with the infinite wing, the angle of attack must be increased, since the descend-
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ing air stream added to the wind due to flight canses

a velocity obliquely downward, In addi-

tion, the air force, as before, must be turned through the same angle, so that a drag resulis.

The rotation will be the greater, the greater the lift

wr
4

F13. 43.—YWing baving finile, but small, chord. Pistribotien of vertical welocity
sompanent along s Xpe parallel to dircevion af Night.
T. Infinjtely long wing.
IT. The downward velocity prodnced by vorfiees Aowing oif.
IIL. Finite wing, sum of T and IT,

and the closer to the middle of the wing
the main production of vorticesis. The
drag must therefore increase both with
increasing lift and with decrsasing span.
A picture of what occurs with a
wing of finite but small chord is given in
figure 43. There the change is shown
of the vertical velocity component along
a straight line paralle! to the direction
of flight through the middle of the
wing; in the upper part of the diagram,
for the infinitely long wing, in the lower
part, for the finite wing. We see from
Curve I the rising flow in front of the
wing, its transformation into a descend-
ing one at the wing itself and the gradual
damping of the descending component
due to the upward pressure drop behind
the wing. (See sec. 15.) The corre-
sponding curve for the finite wing is
Curve III. It is derived from I by
adding to the latter the descending ve-
locity II. Woe recognize the rotation of
the profile as well as that of the lifting
force, which was ori-gina,ll y perpendicular,

through the angle ¢ where tan ¢ ==‘-li“’;, and

w is the veloeity downward at the location of the center of pressure (i. e., at the lifting line).
If we follow the method of Lanchester, as described in section 13, the downward velocity w can
also be looked upon as a diminution of the ascending flow at the leading edge of the wind due
to the absence of the sidewise prolongation of the wing, i. e., to the deviation from an infinitely

section 117,

It may be seen from the figure that at great distances behind
the wing the descending veloeity is 2w, which agrees with the relation
already mentioned that the velocities due to a straight vortex fila-
ment extending to infinity in both directions are twice those due to
a filament extonding to infinity in one direction only, for points in the
plane perpendicular to this vortex passing through its end point.

22, The mathematical processes involved in carrying out the

long wing which was the basis of the treatment in section 15. Dis-
cussions very similar to this are given in Lanchester, Volume I,

theory outlined above become the most simplified if one considers as
known the law, according to which thelift is distributed over the wing, Fi¢. #1—Velocity at a point &' due

We shall call this the “first problem.” The calculation is made as

to vortex leaving wing at point z.

follows: The distribution of lift is the circulation expressed as a function of the abscissaz. The

strength of the vortex filament leaving an infinitely small section de is then % + dr. This

dw=~1~ ‘E—I-‘

produces at a pdint #", according to what has been already explained, a vertical veloeity
downward or upward of the amount

dax

ir " dx ' -z
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In this ¢’ — = takes the place of r in section 8. If the circulation falls to zero at the ends of the
wing, as is actually the case, then all the vortices leaving the wing are of this kind. The whole
added velocity at the position ', assuming that the function T'(z} is everywhere continuous, is

bar  dx o
D%'zal_x (37}

We must take the so-called “chief value” of the integral, which is indeterminate at the

point z=x', i. e., the limiting value ,
—e
lim.(f + f )
=340 ¢ '+

must be formed, as a closer examination shows. We can do this by calculating, instesd of the
value of the velocity at the lifting line, which is determined by the preponderating influence
of the nearest elements, the value of w for a point a little above or below the lifting line. It
is geen that this lagt is not indeterminate and that by passing to a zero distance from the lifting
line it reaches the above limit. Concerning this excursus, impertant in itself, the preceding
brief remarks may be sufficient,

After the calculation of the integral of (87), the downward velocity is known as a function
of the abscissa %' {which we later shall call x}. We then also know the inclination of the

resultant air flow, tan qo—ig. the lift dA=p TV d2’, acting on the section dp’, therefore con-

tributes to the value of the drag
dW=tan ¢ - 44 =pF(z") + wlx’) dz’
since it is inclined backward by the small angle ¢. The total drag is therefore

W= j T wz) de’ = j; jbr (xz.c_l_:‘_iidx’ : (38)

For along time it was difficult to find suitable functions 0 express the distribution of lift,
from which a plausible distribution of w would be obtained by equation {(37). After various
attempts it was found that a distribution of lift over the span according to a half ellipse gave
the desired solution. According to this, if the origin of coordinates is taken at the center of the

e 1(1 (Wz) henceax b\/EbFSm———.
2

The “chief value’ of the integral

f (t’Ht)—\/l : is equal to o

and therefore the integral of equation (37) is equal to 3 ;2; and thus is independent of &
and constant over the whole span. Hence

The value of T, is obtained from

_ +hye _ 112 7 ) .=
A= i pvroLz \/1'_5!_2 de-pV 1% B,

iving
Yorp 13
Hence A
2
YT Ve @9
Since w is constant there is no need of caleulating the drag by an integral, for it is simply
z 3
-2 24 _ A (40)

VT _57"
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The caleulation can also be performed for distributions of eirculation given by the following
general formula:

Do VTZE (T4 DB+ T, 64 . ) 1)
in which E=b_?2' '
According to the caleulations of A. Betz

m=n
W= Oibzn \ | 2 £7 {22+ 1) Pa-m — 2nPum _i]} {42)
m+=g
and
. mek
W= ?Zi Ze l Iy To L‘, Giam [(2k4-1) pk_m--kak_m_ll . (43)
pu L
in which the numbers p snd ¢ have the meaning
1.3....2n—1), .
=" T ey ) T 2,2..2’ Po=1,p4=0 "

The elliptical distribution of lift, apart from its simplicity; has obtained a special meaning
from the fact that the drag as calcula._ted from equation (40) proved to be the smallest drag that

is imaginable for 2 monaplane having given walues of
7/
e It was desirable to compare this theoretical minj-

)/ o the total lift, the span and the velocity, The proof of
e
¥
/I / | ! mumdragwith the drags actually obtained. As farback
Lo
/5

— 1=

4

~ this will be given later.

n 1 as 1913 this was done, but, on account of the poor quality
of the profiles then investigated, all that was done was
- 7 to establish that the actual drag was greater than the
3? theoretieal. Later (1915) it wag shown, upon the in-
/ vestigation of good profiles, that the theoretical drag
" corresponds very closely to the relation giving the change

/ i of the observed drag as a function of the lift. If we
plot in the usual manner the theoretical drag, as given
in formula (40) as & function of the corresponding lift,
—— We obtain & parabela, which runs parallel with the
\ao “ measured “polar curve” through the entire region for

Ny which the profile is good. (See fig. 45.)

-2 \T\g‘, This process was repeated for wings of different as-

40

2¢

pect ratios, and it was proved that for one and the same
profile the difference between the measured and the theo-
Fic, 45.—Folar diagram showing theacetical drag 2nd  tetical drags for one and the same value of the Lift coeffi-
observed drag. cient had almost identically the same value in all cases.
This part of the drag depends, however, upon the shape of the profile, and we have therefore
called it “profile drag.” The part of the drag obtained from theory is called “edge drag,”
since it depends upon the phenomena at the edges of the wings. More justifiably the expres-
sion “induced drag” is used, since in fact the phenomena with the wings are to a high degree
analogous to the induction phenomena observed with electric conductors. _
Owing to this fact that the profile drag is independent of the aspect ratio, it became possible.
from a knowledge of the actual drag for one aspect ratio to calculate it for another. To do
this, we pass from the formula (40) for the drag to the dimensionless lift and drag coefficients,

/ . ) ™
by letting %‘-%a and g{i=cw: we obtain then for the coefficient of the induced drag the

relation
Fi
cw=F (44)
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The profile drag may then be written ¢y, =cy—6,;. If this drag coeflicient depends’ only
upon the lift coefficient, then it would be evident, since it would be the difference between the
measured and the theoretical drag coefficients, that, for the polar curves of two different wings
having ., = ¢, =¢s,

eI, N O
G TRE T e T g
and therefore FoF
cuz( 2 !
0w =t +—( 13- i3 45)
L w1 T 623 '&13 . (

In a similar manner & calculation for the angle of attack may be made if we presuppose an
elliptical distribution of lift. According to our assumption there is a close connection between
the lift of the separate elements of the wing and the “effective’ angle of attack, which is the
same s the angle of attack of an infinitely long wing. This effective angle of attack, according
to our earlier considerations, 1s the angle of attack of the chord with reference to the resultant
air current. It is therefore &' =a—¢. If we substitute tan # =-t{;, for ¢, and introduce in equa-
tion (39) again the lift coefficient, instead of using the 1ift, we obtain for the comparison of two
wings, expressing the fact that the effective angle of attack
s to be the same for two equal lift coefficients, the relation

¢ F &y F
oy — 11_- Z}_I.;-_- [ n—'a“_b,i’
which leads to the transformation formuyla

G, F,
a2=a,+-_‘-+ 3:3*2—;[’; (46)

Fra. 4 —Uniplanar flow in eazse of ellintic die-
tributlon ol lifc on a Hiting line.

These formulag have been fownd to hold for distribu-
tions of lift which do not deviate too much from elliptical ones, although strictly speaking they
apply only to the latter. The fact that the type of distribution does not have a marked effect
is based upon the consideration that both in the caleulation of drag snd in that of the mean
effective angles of attack we are concerned with average results. For the calculation of the drag
one can also introduce the thought that no quantity varies much in the neighborhood of its
minimum. Closer investigation of the square cornered wing has shown that, if the aspect ratio
is not too small, the lift distribution does not deviate greatly from the elliptic type, and that the
theoretical drag for usual aspect ratios at the most is 5 per cent greater than for the elliptic
distribution. As an example of these formulas we shall take four figures from the book published
by the Gittingen Institute (Ergebnisse der Aerodynamischen Versuchsanstalt, 1, Lieferung, 1931).

The first and second figures show the polar curves, and the connection between lift coafficient

and angle of incidence for seven wings of aspect ratio™ 1:7to1:1. The last two figures give the
results of calculating these experimental quantities from the results for the wing having the aspect
ratio 1:5. It is seen that, apart from the aspect ratios 1:1 and 1:2 practically no deviations
are present. The fact that the square can not be correctly deduced from the aspect ratio 1:5
need not excite surprise, since the theory was developed from the concept of the lifting line, and
& square or a wing of aspect ratio 1:2 can scarcely be properly approximated by a lifting line.
On the other hand it is a matter of surprise that an aspect ratio of 1:3 can be sufficiently
approximated by the imaginary construction of s lifting line. The deviations in the case of the
square are moreover in the direction one would expect from a lift distribution expanded over
the chord. A quantitative theory is not available in any case at the present time.

23. If the lift distribution is not given, but, for example, the downward velocity, then the
method of treatment followed hitherto may be used, by developing the downward velocity in a
power series and determining the constants of the serles given above for the lift from the constants

19 Tha Amerionn practice is to dafine aspect ratio as the ratlo of span to chord, which would {nvolve taking the redpracals of the ratics given
jn the text. Te. .
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of this power series, by the solution of linear equations. By this the lift distribution and every-
thing else are known.

Another method for the solution of this “second prob]em will be ebtained by the fol-
lowing consideration: The velocities at a distance behind the wing, on account of the connection
mentioned so often between & vortex filament extending to infinity in one direetion only and

one extending to infinity in both directions, are twice as great as those in the eross section of .

the lifting line, if we do not take into account tha change in shape of the vortex ribbon. We
therefore have here, neglecting this change in shape, an illustration of a two-dimensional fluid
flow (uniplanar flow), for whick the vertical velocity components at the point where the wing
is reached are specified. Tor the simple case that the vertical velocity w is constant, as was
found to be true for the ellipticallift distribution, the shape of the flow that arises has been known
for s long time. Itis given in figure 49, It is the same as that already considered, in another
connection, in section 15. The picture of the streamlines show clearly the velocity disconti-
nuity between the upper and lower sides of the vortex ribbon, indicated by the nick in the stream-
lines, and also the vortical motion around the two extreme points of the vortex ribbon, corre-
sponding to the ends of the wing.

Any problems of this kind can therefore be solved by means of the methods provided by
the potential theory for the corresponding problem of two-dimensional fluid flow. We can
not go inte these matbers more closely at this t:me by a later opportunity some special rela-
tions will be discussed, however.

A “third problemJ " consists in determining the lift distribution for a-definite wing having o
given shape and given angle.of attack. This problem, as may be imagined, was the first we
proposed; its solution his taken the longest, since it leads to an integral which is awkwsrd to
handle. Dr. Betz in 1919 succeeded after very gresat efforts in solving it for the case of a square-
cornered wing having everywhere the same profile and the sume angle of attack. The way the
solution was obtsined may be indicated briefly here. We start, as before, from the relation

o= a-{qb“"a%-v

B1 equation (37) w is expressed in terms of the circulation. The effective angle of attack
o can be expressed in terms of T, since, according to the assumptmns made before the Iift,
distribution, which is proport:onal to I', depends directly upon o’. The relation between of
and T can he assumed to be given sufﬁciently exactly for our purposes by a linear expression

T=Vtle o' +¢,) 47)

in which ¢ iz the length of the chord (measured in the direction of flight). By the intreduction
of the facter Vi, e, and ¢, are made pure numbers. The numerical value of ¢,, which is the more
important, can be expressed, if ¢., is the lift coeflicient for the infinitely long wing at the angle
of attack ¢’, by the relation
_1de,,
7 do
A4 el I ¥i er

e =0 =2 (g0 +e,)
“Fq “ o V2 Tt

In fact

For a flat-plate theory proves that ¢, ==, for curved wings it has a slightly greater value.
If, according to what has gone before, we express o' by T and w by dr zmd write
35: =f(a:) and therefore 1'= J; Flaydx
we obtain after a simple calculation the integral equation

ij(m)dm+i—f_ib%{)—? = Vit (e,a+¢,) = const. 48)
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A solution of this equation can be obtained by expanding T as in equation (41) and develop-
ing th_en all the expressions in power series of E=E%‘- For every power of £ there is then

a linear equation between the quantities T, T, ete. There is a gystem of equations, then,
with an indefinite number of equations for an infinite number of unknowns, the solution of
which in this form is not yet possible. The aspect ratio of the wing appears in these equations

as a parameter, and it is clear that the solution for & small aspect ratio, 1. e., % iz easier than for

a large one. Dr. Betz proved that a development in powers can be'made for the unknowns in
terms of a parameter containing the aspect ratio. The ealculations which are contained in the
dissertation® of Dr.. Betz (1919) ave

S very complicated and can not be re-
i7 \\:2"& =] produced here; but certain results will

Ni;“( be mentioned. The Betz parameter
< L has the meaning

N N
NN Lo _1b &’

\\ \\ .cl it dcam .
\ N In the application to surfaces which
\ \\\“ are investigated in wind tunnels the

Ca de, ®

value 8_ is known, not P For

i
L

i this case theory gives a relation which
can be expressed approximately

b da
L=.,385—d~cu-13

We can thus obtain the value of %"—

3
azashagaaaa

from the connection mentioned.
The distribution of lift density
ever the span iselliptical for very small
F10. 89.~Change in distiibution oL 1L, ss a funetion of T, the parameter of Bere, BSpect ratios and for greater ratios
becomes more and more uniform; for
very e]ongated wings it approaches gradually & rect.angula.r distribution. Figure 50 shows

this change in the distribution depending upon L. :
The drag of the wmg with the rectangula.r distribution is greater naturally than with the
elliptic distribution, since this gives the mmlmum of drag, vet the differences are not very great;

a¢ ar 02 03 ¢ 45 ags @7 a8 09 i@
—_—

for instance, for L=4, ( 6) it is about 5 per cent greater than that of the elliptical distri-

bution. An approximation formula, aceording to the values obtained by Betz, is
Y §
Wee ;@5 (0.99 +0.015 L),

This is applicable for values of L between 1 and 10.

The distribution of lift, downward velocity, and drag upon s very elongated wing is shown
qualitatively in figure 51. It is seen that the downward velocity and the drag gradually accumu-
late &t the ends of the wing. This gives also the correct transition to an infinitely long wing,
with which for interior positions the lift is constent, and the downward velocity and the drag
are equal to zero, while, as we know, near the ends these last quantities always assume finite
values.

U Printed in extracts ie Heft 2 of the * Berlehte u. Abhl. der Wisa. Gea. f. Luftf.” Munich, 192¢ (R. Oldenbourg), -
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E. IMPROVED THEORY OF AIRPLANES HAVING MORE THAN ONE WING.

24. The knowledge obtained in the theory of a monoplane can be applied also to mulfi-
planes and furnishes here a series of remarkable theorems. We shall limit ourselves to the

theory of the first order, as designated in the theory of monoplanes, therefore we shall neglect '
the inflaences of v. Further, we shall not take into account the effect of curvature—i. e., we -

shall consider the separate wings replaced by “lifting lines.” For the sake of simplicity we
shall limit ourselves to multiplancs with wings which are straight and parallel to each other.
The generalization of the theorems for nonparallel wings, corresponding to the deduction given in
“ Wing theory IT,” will then be stated without proof.
Let us first solve the introductory problem of T ahlidl
caloulating the vertical velocity w produced by a 4 | ]" ! ” |
lifting line at a point 4 which lies off the lifting '
line. At the beginning let us assume that this point
lies in the same “ transverse plane” (plane perpen-
dicular to the direction of flight). According to
our assumption as to the location of A, the action
of the transverse vortex is zero:  With reference to
the longitudinal vortices it is to be remembered that

the velocity - % : d?f produced by a longitudinal Jl“l“lﬂlllll!ll||\l||!m|mm\muunmlllllllllllllll“““||

rortex of sbrength gdx iB perpendicular 0 t]le Fra. 5L-Distribution oflilt, down-wash and Jdrag for s long wing,

line ¢ (see fig. 52), and therefore must be multiplied by sin 3 to obtain the vertical component.
We arrive at the downward velocity, therefore, by integrating over the lifting line, viz:

we -2t ffig(éig %) (49)

This relation can be brought into another form by a partial integration. Since at both wing
ends T' =0, we have
sm ﬁ
& f

i silj () 2:::3 1—23_11131?7 cos 2B
a}

But

a* Tt

s0 thai we have
w__“fPCOSQ.S (50)

With the aid of this relation we can write down immediately the value of the drag which arises
owing to a second wing being under the influence of the disturbance caused by the first wing
lying in the same transverse plane. Let us eall w,, the disturbance velocity at

As A __ 4 point A on the second wing. According to the results of section 22, the
i drag then is o

z & W, = pﬁrm e

= or, if the value of w,, as given by equation (50} is substituted,

2 " ("pp, cos 26 51)

o L B R ey

litting line, hut i ' . . . "
th ’fgtra'; «verse The double integral, as one sees, is perfectly symmetrical in the quantities asso-

plous, dne to the ciated with both wings 1 and 2, We conclude from this that the drag which
vorter systett wing "1 experiences owing to the presence of wing 2 is of the same amount as
the drag calculated here, that, therefore,
W= Wy
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In the more general case of two curvéd lifting Jines lying in & transverse plane, a formula is
obtained which differs from equation (51) only in having cos (8, 4-8,) in place of cos 2 8 in which
8, and B, are the angles which the line ¢ makes with the normals on the two lifting elements con-
nected by a, and in heving ds,ds, in place of dz,dz,. The relation W,,= W, therefore holds in
this case also. This mutual relation, which was discovered in & different manner by my assist-
ant, Dr. Munk, is of importance in various applications. Sinee it plainly is not necessary for
the lifting elements taken as a whole to belong to a single surlace, the theorem may be stated:

If, out of a lifting system all of whose elements lie in & transverse plane any two groups
are selected, the portion of the drag experienced by group 1 due to the velocity field of group 2
is exactly of the same amount as that experienced by group 2 due to the velocity field of group 1.

We can Interpret the partial integration performed above by saying that the velocity w
appears by it as built up out of the contributions by merely infinitesimal wings having the
length dz and the circulation I, while previously we have always built it up out of the sctions

of the separate vortices %gdx. The integrand of equation (50) in fact agrees with the velocity

which is caused by two vortex lines of equal but opposite strengths I lying at a distance dx apart.
The double integral in equation (51) can, from this point of view, be loocked upon as the sum
of the actions of the vortex strips of all the elements d:c on all the
lifting elements dzx,. _

The objection might be raised that equations (50) and (51) cease
to be applicable if the value ¢ =0 appears, since this gives an expres-
sion of the form ow—w. They are not, therefore, suited for the
calculation of the velocity w at the wing itself. In this case we must -
return to equation (49}, and take the “chief value’ of the integral;
or, the value of wy, and of W), for a lifting line that lies very closc
must be caleulated, and then we can obtain our final result by passing

Fro. 55V elocit _ to the limit for coineiding lifting lines. As is seen from this, the

s ¥ at & point 4

not in thetransverseplanc,ane  Telations W, = W, hold also for lifting lines -eoinciding in space,
10 he Vorpex system. which, besides, may have any arbitrary lift distribution.

The mutual drag need not, as has already been mentioned, always be positive. For in-
stance, it is negative for two wings placed side by side, since then each wing is in an ascending
current caused by the other, and the total drag is therefore less than the sum of the mutual
drags which each of the wings would have ab a greater distance apart. The bebavior of certain
birds which in a common flight space themselves in a regular phalanx can be explained by
reference to this.

25. In order to be alle to treat the case of staggered wing systems, the next problem is
to caleulate the velocity field due to a hifting element of the length d together with its pair of
vortices at a peoint 4 which may now lie off the tranaverse plane, and at a distance y from it.
(See fig. 53.) The origin of coordinates will be taken at the projection of the point 4 upon
the transverse plane, and the X axis parallel to the direction of the element. * Using the sbbre-
viations

¥ 2 ol g2 2
@=pit 2t =gty

- the veloeity produced at the point 4 by one of the two vortices, by formula (6h), is given by

T

ol @ ) the component in the direction of the Z axis, to which we here again limit our-

4=:ra2 (1 + )

The pair of vortices produces then a velocity which may be written as the difference of the
eﬂ’ects of two vortices which are close together:

d, aarzz,d).x _ldx I:l 2:c2( + y) :::8!]

selveg, is, then, putting sin ‘8=E'
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To this must be added the contribution of the trangverse vortex

Idz . y
dwy=—rs
The sum of these two velocities, if the two angles defined in figure 53 are introduced, amounts to
. . s _
dw=TE {22 1 poin oy S0 200 B (52)

With the help of this formula we can now calculate &t once the drag experienced by a lifting
clement situated at the point A and parallel to the forrner, whose length is d, and circulation
T,. If the first element 1s given the index 1, this drag is

@ WPl rdx,dx,ﬂcos 28 (1 + sin )+S_111,259§13}] | (53)

4r T

As is eagily seen, the drag produced on the lifting element 1 by the lifting elsmant 2 is obtained
if in place of a and 2 the values a +x and 8+ are introdueed. Therefors it is

& W“:l?_rz_ I'.4 fxz d:cl_[[cos 28 (L-sin a) — sin o ::osf B)] 53w

It is seen from this that the two parts of the drag are equal only if a =9, that is if the two ele-
ments lic in the same transverse plare. Yet in the.general case the sum 42 Wy, +d* W,, is inde-
pendent of a, therefore independent of the amount of stagger, The sum of the two mutual
drags leads thus to the same formula as that already derived for nonstaggered wings. If we
again pass to the general case of nonparallel lifting lines, in which again ds, and ds, are to be
written in place of dx, and dz,, we obtain as may be proved by performing the caleulation, the

relation
Wt Wy _Ul‘r’ds ds, 005 B+ 5) (54;

As is evident, this sum remains unchanged if the two ]1ft1ng groups are displaced in the direc-
fion of flight. Since the total drag of a ].1ft.mg system is composed of such mutual drags as cal-
culated above and of the proper drags of the separate wings,” which likewise are not changed
by a displacement of the wing in the direction of flight, the following theorem may be stated:

The total drag of any lifting system remains unchanged if the lifting elements are dlsplaced
in the direction of flight without changing their lift forces.

This “stagger theorem” was likewise proved by Munk. For a proper understending of
this theorem it must be mentioned expressly that, in the displacement of the separate lifting
elements, their angles of attack must s0be changed that the effective angles of attack and there-
fore the lifting forces remain unaltered.

This theorem, which at first sight is surprising, may zlse be proved from considerations of
energy. Lot us remember that, by the overcoming of the drag, work is done, and that in a non-
. viscous fluid, such as we everywhere assume, this work can mot vanish. Its equivalent is, in
fact, the kinetic energy that remains behind in the vortex motions in the rear of the lifting
system. . This energy depends only upon the character of these vortices, not upon the way in
which they are produced. If we neglect, as we have throughont, sny change in shape of the
vortex system, then, in fact, the staggering of the separate parts of the lifting system can not
have any influence upon the total drag.

26. For the practical caleulation of the total drag of a multiplane, we have then the follow-
ing: The total drag consists of the sum of all the separate drags and of as many mutual drags
ag there are combinations of the wings in twos. If the nature of the lift distribution over al}
the separate wings is specified, then the proper drags are proportional to the square of the sepa-
rate lifts; the mutual drags, to the product of the Lfts of the two wings in question. If the
coefficients of this mixed quadratic expression are all known, then one can solve without diffi-
culty the problem: For a specified total lift, to determine the distribution of Lift over the sepa~
rate wings which will make the total drag a minimum.
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In order to know these coefficients to a certain degree I calculated them for the case of two
straight lifting lines whose middle points lie in the same plane of symmetry, with the assump-
tion that the lift over each separate wing is distributed according to a half ellipse. The results
are given in my papet “The induced drag of multiplanes” in Volume III, part 7 of the Tech-
nische Berichte. For this purpose the velocity w for the entire neighborhood of a wing in the
transverse plane was first caleulated by formula (49), and then the integrals for the mutnal

drags were obtained by planimetry. To show the analogy with equation (40} this may now

be expressed by the formula

aéﬁ.z_ (55)
mgh b

by means of which the numerical factor ¢ can be expressed as a function of the two variables
: :

“712=

and g—’ Caleulation gave the following table:
) _

1
§(b| + bs)
TasLe I.—Values of ¢
l n !l 0.05 0.1 | 015 0.2 0.2 0.4 0.5
b | 18 o.70 | 0655 | 0.5 | 0485 | 0.8310 | oy | 0230
-—-{ -] .o « 609 DX + 458 1 282 205
By 0 .54 AR5 ._537 -394 315 1.1} 210

The curve of the function o is given in figure 54¢. For the most important case, viz, for
two wings of equal span, [ have developed an approximation formula which is

h
1- 0.663
=y {56)
1,055 -I-3.7?;

It may be used from %=0.05 to 0.5.

The total induced drag of a biplane is then, if b, is the greater span and if the ratio gs
is designated by a !

W= W, +2 Wyt W, =$(A,?+ 90pAA, +uid;?) 37
Simple calculation shows that for a given A, +.4, this drag is & minimum for
1
4, A =(u—0) :(;—a) (58)

The value of the minimum is fouud to be
A A 1-d
Wmin— Wg lz 1—- 20.”_4_#3 (59‘]

The first factor of this formula is the drag of a monoplane having the span 3, and the lift A, +4.,.
Since o< g, the second factor of the formula is always less than I, 1. e., the induced drag of
biplane is less than that of a monoplane which in the same span carries the same load. For

& ‘“tandem,” i. e., an arrangement of two wings one behind the other, the stagger theorem shows

an equivalence with two coinciding wings, i. e., a monoplane. Among the different biplanes
having prescribed span b, and prescribed gap %, that one is the most favorable in which the
second wing also has the span 5, The most faverable ratio of the two lifts is then 1 ;1 and

the se¢ond factor of equation (59) becomes equal to % (1+0).

These statements must not, however, be misunderstood; they refer only to the comparison
of such wing systems as have the same value for the greatest span. Naturally, for every biplane
a monoplane may be found with somewhat greater span than that of the biplane, which at the:
same total lift has the same induced drag as the biplane.
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This last remark leads us to apply alse to the biplane the deduction formulas obtained for
monoplanes. All that is necessary is to replace the biplane of span , by a monoplane of a
somewhat greater span kb,, which with reference to the drag—and, on the whole, with reference
to the angle of attack—is equivalent to the biplane. If again we pass from the lift and drag
to their eoefficients ¢, and ¢y, the formula connecting the drags of any two lifting systems
1and 2ig

oy F, F, :
Cwy "Gw;=__ﬂ__((zlbil)3“"@i)_g) (60}

in which, as is easily seen, the factor &, for a hiplane having the most favorable distribution
- of lift, is the reciprocal of the sqirare root of the second factor in formula (59).

~ The tests of this formula with biplanes have shown that, when by giving a special shape to
the wing the lift distribution was made elliptical, there was good agreement, with the calcula-

tlons from monoplane experiments; with biplanes having the usual square-cornered wings,

on the other hand, there was a discrepancy, which is to bo attributed to the fact that the life
distribution on.these biplanes deviates too far from an elliptic one. We can, however, retain
the same transformation formula if the fac-

tor k is determined empirically for every 7
wing system; it is found to be somewhat
smaller than according to the theory given \'\,
above. The experiments on this point ave  ggj—)
not yet completed, so more accurate values N
can not as yet be given. The earlier Got- § 0.7 X
tingen experiments were worked up by Dr. T N
Munk, to whom this last idea is due, in the ~ %¢ ~
paper ““Contribution to the aercdynamies do 5 e, §\
of the lifting parts of airplames” in the AN K}Q\\&
Technische Berichte, Volume 17, page 187. 04 % \qk(\
27. Inthe previoussection Thave tresated o5 \;}\%h
the problem of finding the minimum of the ' P
induced drag of a multiplane, under very . M
definite assumptions concerning the distri-
bution of lift over each separate wing. The o/l = 2 e 4
strict minimum problem is however differ- Y _.i;_{@, as

ent, viz:
To determine for a given front view of
a lifting systern that distribution of lift over
all the lifting elements which will make the induced drag a minimum for a specified total lift.
In this statement of the problem the expression ‘‘a given front view”—i. e., more exactly
stated, a given projection of the lifting system upen a plane perpendicular to the direction of

Y1, $4~-Curve of the function ¢ for biplanes whose span rat M,w’%’,is varied,

flight—is used to mean that the wing chord is of secondary consideration, and does not need -

to be determined until later when the selection of suitable angles of attack is made.

The genersl solution of this problem was also given by Dr. Munk. It will be deduced here
in a simpler manner than that given in Munk’s dissertation, where the solution was obtained
by the caleulus of variations. By means of the stagger theorem mentioned in section 25 the

wing system will be referred back to the corresponding nonstaggered system. For this, as we

showed, the relation W,,= W,, holds. Wae shall now introduce—with the simplifying assumption
that all the lifting elements are parallel o each other—a variation of the Lift distribution by
adding at any one place a lift 64 and at the same time taking away an equal amount at some
other place, so that on the whole the lift, which is preseribed, remains unchanged. We must
now consider the change i the induced drag caused by this variation. If there is superimaposed
upon the lift distribution an additional air force 34 disiributed over & short portion dz, there
arigses therefrom, in addition fo the drag proper of the added lift—which, however, if sufficiently
small is of the second order—a mutual drag, because on the one hand the added lift finds itself
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in a flow having the downward velocity w, which is due to the lifting system, and on the other
the lifting system is in the velocity field of the added lift. The first of thesge two drags, as is

easily seen, is 64‘1%,; the other part, according to our theorem, hag the same value; so the total

drag is twice this. What condition, now, must be satisfied by the sum of the mutusl drags
caused by our twofold change of the lift distribution in order to obtain the absolute minimum
of the induced drag? The answer is, evidently, that we will have the minimum only if by no
change of this kind can the drag be further diminished. The sum of the induced drags, there-
fore, can in no case be negative; also it may not be positive, becanse in that case by a reversal
of the cigns of the changes which we selected we could make the sum negative. Only the value
zero is therefore allowable. Ience, if w is the vertical velocity at point 1 and w, that at point
2, we have the relation '

BA, 434, =0
and, therefore, since 54, = —8d,,

W,y = ;. :

Since this holds for all the lifting elements, we have obtained the snswer. The lift distribu-
tion which in the given wing system, for a specified total lift, causes a minimum of drag is that
which leads to the same downward velocity at all the lifting elements. With monoplanes the
elliptical lift distribution leads to a constant downward velocity «. We recognize from this
that the eiliptical distribution in fact is that distribution of lift which eauses the least drag for
a monoplane.

The theorem can, besides, be extended easily to the case of nonparallel lifting elements
lying in a transverse plane. If w, is the velocity in the transverse plane perpendicular to the
lifting element and e is the angle between the direction of wy, and that of the given total lift,
then, as may be shown without difficulty, ws=1w, cose for all the elements. (If ¢=o, and
hence cos e=1, the statement made above again appears.)

28. A way to solve the problem of finding the lift distribution for a prescribed distribution
of the vertical velocity has been indicated already in section 23. The velocity field left behind
in the air by the lifting surface is, approximately, according to the remark made hefore, a
uniplanar flow around the vortex system produced by the lifting system in ite motion, and this
vortex system may be regarded, as a first approximation, as a sclid body in the fluid. In the
minimum case this figure, according to the results of section 27, moves like a rigid body, not
alone in the case of parallel lifting elements, but also in the general case, for the general mini-
mum condition, w,=1w, cos ¢, expresses directly that the normal velocity of the fluid at an
element of the rigid figure moving in the direction of the lift coincides with the normal com-
ponent of the velocity w, of the rigid figure ifself. The problem is thus reduced to a perfectly
definite one treated in the hydrodynamics of uniplanar fluid motion.

This uniplanar flow can be brought into relation, in a specially clear manner, with the
pressura distribution existing on the wing system. The wing system, during its motion along
its path, imparts to one portion of the air after the other the velocities which we have learned
to know as the result of the vortices flowing off from the wings. This transmission of velocity
18 the result of the spreading out of the pressure fleld of the wing system over the air particles
one after another. In order to simplify the phenomenon for ourselves we can now imagine
that these velocities are produced at the same moment by a sort of impulse phenomenon over
the whole path of the lifting system. To produce this impulse it is necessery to have a solid
figure of the shape of the geometrical region passed over by the lifting system (i. e., of the
shape of the vortex surfaces which it leaves behind). Tf we are concerned with a system of
least drag, this figure moves as a rigid body; otherwise it would also experience a change of
shape due to the impulse, The final velocity w* of the figure coincides with the motion of the
vortex surfaces at a great distance from the lifting system, and is therefore to be put equal
to 2w. For a monoplane having elliptical distribution our figure is therefore an infinitely
long flat plate of the breadth &.
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By the production of the velocity during the impulselike acceleration an increase in the
pressure p, arises below the plate (in the case of multiplanes, under each of the plates corre-
sponding to the separate wings) and at the same time a decrease in pressure p, above the plate
{or the plates). We can now compare in a very simple manner the total action of the pressure
differences at each point of a plate during the time of the impulse with the total action of the
pressure differences of the wing in its forward movement at the point of the medium in question.
If the resulting motion is the same in both caszes, then the pressure differences integrated through
the proper times must have the same values. If in the impulse phenomenon lasting a timera

portion of the fluid of length I is considered, and if therefore the action of the lift %dx in the

time t=%,re=q’uired- to. pass over the length I is to be compared, the following relation must
hold for the conditions on a strip of width da:

M@LEP1—Pz]dt=%‘ldﬁ : 1'7} (61)

A formula connecled with our previous relations can be obtained by a trrasformation of the
left-hand term. According to & known extension of the Bernouilli equation for accelerated
motion we have

il »3'!12 -
ra T Fp=fiD).

For our impulse phenomenon the arbntrary time function f{f) is a constant, since at the
points of the fluid lying far away from the impinging plate the pressure does not change. If
the impulse is sufficiently quick, then during the short time of 1mpulse 7 the aceeleration and

_ the pressure differences will be very large, and therefore the t.erm 5 M8y, be neglected in
comparison with the other two, since it itseli does not exceed modera.te- values. We obtain
therefore the simplified relation

p%? +p=const.=

which, if at the beginning everything is at vest, (®,=0) may be integrated to
po = f —pd - (62)

we can therefore wrlte in equation (61), the expression p(®,— &) in place of f(p1 puydl. The

potential differences ®,— &, which here appears is, according to the connection between poten-
tial and circulation (see sec. 5), nothing hut the circulation T for & closed curve which passed
around one edge of the vortex ribbon and intersects our vortex ribbon at 2, the point consid-
ered. This circulation is again nothing but the cireulation around the wing at the point =.
If the factor ldz is omitted from hoth sides of equation (61), it takes, as a result of this trans-
formation, the form

a4

E =P("I’z - ‘1)1) VE'P vr (63)

We have thus proved in an entirely independent way, as we see, the Kutta-Joukowski
theorem for & wing element, which previously we took over, without proof, from the infinitely
long wing.

The relations deduced in the previous paragraphs permit, in the case of a constant w,
the formation of general theorems for w and W in place of (39) and (40). By integration
of (63} the total lift is at onee obtained

=P VEI (B, — ¥, da (64)

The values of ® in this formula are proportional to the velocity w* of the vortex ribbon,
" that is, are dependent upon 4. Quantities which are independent of 4 are derived if the poten-
tials & are divided by w*. In this way we obtain the potentials for a veloeity of the vortex
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ribbon equal to 1. The potential, being the line integral of the velocity, has the dimension
velocity times length; the potential ¢ for w*=1 has therefors the dimension of a length, and
hence

o[ (6, —d)do

is a surface, which will in what follows be called F’, which depends only upon the geometrical
properties of the projection of the wing system upon a plane perpendicular to the direction
of flight, therefore upon the front view of the wing system; and which evidently for geometrically

similar front views is proportionsl to the square of the span. By introducing F’ into equation
{64) we have, since ¢ = pw¥*,

A=pV*F’ (65)
From this we may immediately deduce w¥, and thereby also the downward velocity at the point
of the wing system

1 A
w=gW =5 v (66)
If this value is infroduced into the relation W= ;—f?-zl, we have

A? A®
= VI Tigh (67)

The evsaluation in the manner of the flow of figure 49 gives a potential &, if the span of

W

. k-3
ston of this value gives a circle having the span b as diameter, therefore F',,’Lf.. Using this

value formuls (67) passes over in fact into formula (40).

It may also ba noted that a uniform velocity can be superimposed upon the uniplaner
flow here discussed, whose discontinuity in potential at the rigid figure representing the vortex
ribbon causes the surface F’, without thereby changing the relation for F”, for the potential
discontinuity between the lower and upper sides, with which we are here concerned, is not
changed by the saperimposed uniform motion. We may now choose the velocity of the uni-
form motion exactly opposite and equal to the velocity w* of the rigid figure, and thereby
secure the condition that in the new flow the rigid figure is at rest and is surrounded by a flow
which . at. infinity has the velocity w. The forces which the rigid figure experiences by the
preduction of this motion, and which are connected intimately with the so-called ““apparent
mass,”’ are what we have hers set in parallel with the wing-lift. '

The surface #* supplies in addition a very simple mechanical connection between the
velocity 1 on the one hand and the lift and drag on the other. According to equation (65)

A =pF" Tyt

w?

WV=dw=pF'V=-
where in the second equation use has sgain been made of the relation w*=2w. Now pFV
is the mass of air flowing per second through the section F*. If in order to simplify the whele
problem it is once assumed that all the air particles within the section F” experience the full
deviation w* but that all outside ave entirely undeviated, then exactly the correct lift and
the correct work due to drag are obtained by application of the impulse theorem and the energy
theorem. For the lift. is now equal to the mass of the fluid deviated per second times the
vertical velocity imparted to it, therefore equal to the impulse imparted to the medium. Also,
in the seme manner, the work done per second by the drag WV is the product of the mass of
the flnid passing per second times the half square of the deflection velocity, and therefore equal
to the kinetic energy left behind in the medium. This relation is indeed best suited to establish
the phenomena of the theory of airplanes in a course for students who are only slightly skilled
in mathematics. The fact that for & monoplane the circle having a diameter equal to the span
comes put as the surface F' is one that will appear most plausible to the laity.
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20, Of the theory pictured in the preceding section, according to which the determination
of the induced drag in the case of the most favorable lift distribution is reduced to a problem
of the potential theory, manifold applications have already been made. IEspecially, Dr. Gram-
mel and K. Pohlhausen have treated, at my instigation, the case of the biplane made up of two
straight monoplanes of the same span, and also, on the other hand, that of & monoplane having a
longitudinal slot. The ealeulations in both cases are solved by means of elliptic integrals. I
have given the formulas in my Wing Theory II. It may be sufficient here to state the practical
final result, which is referred to the magnitude of the surfaces F¥. These surfaces are best
expressed for biplanes in terms of the corresponding surfaces of the monoplane having the same

span. In fact, the ratio F” : JI“ b, as is easily seen, oquals the square of the factor &, introduced

in section 26, by which the span must be increased in order to have a monoplane of the same
induced drag. The values of k* for the biplane are obtained from the following table. The gap
of the biplane, i. e., the distance apart of the two wings, is designated by .

TasLE 2,

Values of k¢ m Fr: 10

Rfb= .. .‘ 0

. 0.05 | 0.10
PBe ] LOO 56

0,15 ‘ 0.2 0.9
i h.212 1.230 ' 1332 1. 461
. I

0.4 verssasas LB ag |
L850 |.oaiiiias i 1,628 2,000 ¢

The values given in the table may be expressed by the approximation formula

1027+ 3.84h/b
A w9 ) (68)

-In the case of the monoplane having a slot a suitable comparison wing is obtained by shov-
_ing the two halves of the monoplane together until the slot is closed. 1f & is the original span
and ¢ is the width of the slot, this monoplane has evidently the span d—d. We chall therefore

form the ratio F’:% (b—d)* and again designate it by &= Calculations gave the following

values:
TapLE 3.

Values of kt = F’:%{b-—d)’,

1
0.00L €.010 - 0.0316 I 0.100 ‘ 0.250

..... " o.000 |
0.762 | 0.678 | 0.6200 [ 0.58  0.528

k..., L1000

0, 500 1.060
0.508 | 0.500

It is seen that even very narrow slots produce an important increase in' the induced drag.

For a very wide opening % falls to one-hall, as may be deduced easily from the fact that now,

instead of one monoplane, we have two monoplanes of half the span. The values given In the
- table may be expressed by the approximation formula

i
T 241035 (og, b/d)

Tigures 55-57 show, at the left, the uniplanar w* — {low and, at the right, the surfaces F*, for a
monoplane, & biplane, and a monoplane with a slot.

B=1

(69)

F. AEROFOILS IN A TUBE OR IN A FREE JET.

30. To draw conclusions from the experimental Tesults obtained in & tube bounded by

solid walls or in a free jet from a nozzle, it is very useful to know the influence of the neighbor-

ing walls and of the boundaries of the jet upon the phenomena at the aerofoil. We wish indeed
to know the hehavior of the asrofoil in an air space infinitely extended in all directions; and the
problem therefore arises to introduce a method for passing by calculation from the case which
prevails in the experiments to that of the unlimited air space. For this purpose we shall next
state clearly the boundary conditions which exist at solid walls parallel to the direction of the
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Flg. 3.

T.aft: Flow behind o monopline, 8 biplane, snd 3 menoplane with a slot, with relerence 10 an
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wind and at the froe boundary of & jet. At selid walls, the velocity components normal to the
wall 2, must equal zero; on a free jet boundary, on the other hand, the pressure is to be put
equal to that of the surrounding quiescent air layer, and therefore is constant. We ean trans-
form these last relations as follows, keeping within our theory of the first order. Aceording to
the Bernouilli theorem, if 7 is the undisturbed wind velocity, and «, v, and w are the additional
velocities

p+§[u3+(V+v)3+w’]=po+—gV‘-‘
O BICE B Por WA E wt 2 Vo =0,
It we neglect the squares of the disturbance velocities as being small of the second order, we
have as the approximate initial condition for the free jet v=0. We proceed s step.farther upon
the path indicated to us by the approximation theory of the first order if we prescribe the value
v=0, not for the actual jet boundary, but for that cylinder which 1s given hy the surface of the
undeviated jet. By doing this the boundary condition for the free jet becomes very szimilar,
in a formsal way, to that for the solid walls.

The two problems can now be solved in the following manner: We consider first, the velocity
field for the unlimited air space, according to the exposition previcusly given. This field offers,
both in the case of the tube and in that of the free jet, contradictions with our boundary condi-
tions at the walls or the jet bounda.ry We must superimpose a velocity field which in the
interior of the region considered is free of smgularltaes and which on the boundaries has veloci-
ties opposite to those velocity components, the vanishing of which is preseribed by the boundary
condition. It is easily seen that by the superposition of this second velocity field on the original
one the boundary conditions are satisfied exaectly. The influence of this second field upon
the aerofoil is now exactly that influence which we are seeking, and which we can caleulate
from the results of the theory of aerofoils as soon as this second field is known,

The additional velocity field corresponds to a pure potential motion; we have, therefore, the
problem of determining its potential . In the case of solid walls we are thus led to the problem
of finding thoe potential for a given region (the interior of the tube} when the normal component
w, of the flow is given at the boundary of the region. This is the so-called ‘‘second boundary
valae problem’ of the potential theory. The corresponding problem for a jet, as we shall soe
at once, leads to the *‘first boundary value problem,” in which at the boundary the valies of
the potential itself are prescribed. According to what has been ssid above our region is a cylinder
whose generating lines are parallel to the velocity V, hence, parallel to the ¥ axis, and for each

point on the houndary the relation g%= —7 (in which the dashes indicate boundary values) is

prescribed. Integrating this relation for each generating line gives

F@=~[" vy
If we go sufficientiy far upstream every influence of the nerofoil vanishes; therefore for y = - e,
$=0; and hence y= — o is taken ag the lower limit of the integral. By this, then, we ohtain

the boundary values of the potential & ().

The complete calculation of the added potential ® for the entire interior of the tube or jet is
fairly difficult. If we concern ourselves, however, only with our main problem, to determine
the corrections which must be applied to our experimental results, then we can again assume
that the velocity components perpendicular to the axis of the tube in the plane of our aerofoil
ave half as large as at a great distance behind it. This consideration, which proceeded from the
comparison of & vortex filament proceeding to infinity in one dircetion only with one proceeding
to infinity in both directions, holds here exactly as well as in the cas¢s discussed previously.
We can therefore pass here as before from the space problem to a uniplansr one if we caleulate
the phenomena far behind the aerofoil. Our boundary conditions for the uniplanar problem are,
for the tube, wy =0, for. the free jet, # =const. The last condition may be interpreted specially
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conveniently if use is made of the method of treatment of section 2§. Since in this, for the end
of the impulse phenomenon, <15=f: {(po—p) dt, ®—const. means simply that F= const., which,
indeed, was the original boundary condition for the free jat.

31. The conditions stated in the preceding section can be secured most easily for a jet, or
tube, of & circular cross section. In this case the added motion is obtained very simply by
assuming for every vortex flowing off an equally strong one outside the circle, at the point out-
side corresponding to the one inside according to the reciprocal radii. If the direction of rota-
tion of the external vortex is taken the same as that of the interior one, then at the points of
the circle the boundary condition for a free jet is obtained; and, if opposite directions of rotations
are taken, then the boundary condition for a tube is satisfied. This may be expressed by saying
that there is combined with the aerofoil another obtained by reflexion according to reciprocal
radii, whose circulation at corresponding points is the same in absolute value as that of the
actual aerotoil, and for the jet it has the same sign, but for the tube the opposite sign.

The exact calculation has been made for a straight monoplane in the middle of the jet,
agsuming the 1ift to be disiributed according to a half ellipse. If b iz the span of the monoplan:
and D the diameter of the jet, then the disturbance velocity w’ caused by the jet boundary at
the distance z from the middle of the jet is

; A ] 3 35
W=y ",};T;(l + z&z + EE‘ + 1 2850 + etc.) (70)
in which §="2xb/D2,

The added drag ealeulated from this velocity according to equation (38) is found to be

W[ e(B) *ein) ] ™

A similar caleulation for a uniform lift distribution gave for the first term in the formula
for the drag the same value as in equation (71). It appears that the other terms of the series
have but little importance with the usual ratios, so that we can limit ousselves to the first term,
An approximation treatment shows, further, that any small wing system, in the middle of the
circular jet gives mise to the same expression, We can therefore write for the total induced
drag of the wing system in a jet of cross section F,, if the surface F” is again introduced from
section 28,

P2 (7t3m,) : (72)

For & tube of circular cross section the same disturbance effect is found, but with the oppo-
site sign; and therefore we have the approximation formula for the drag

A')
=% - 2—;«*) (72a)
The correction, owing to the consideration of the finite cross section of the jet, is for the
ratios ordinarily used not small, For %=%, it is already one-eighth of the induced drag.

Formula (71) gives 0.1262 instead of 0.125; the corresponding formuls for uniform distribution
gives 0.127. It is seen, therefore, that the differences are not great, and that the approxima-
tion formula (72) is satisfactory for most cases.

For a tube of rectangular cross section the caleulations would have to be made in such a
manner that the aerofoil was mirrored at all the walls an infinite number of times, like a check-
erboard. Further development of the calenlation leads to elliptic functions, It has not yet
been carried through. One can assume, however, that for a tube having a square cross section

the influence of the walls will be of about the same magnitude as for the circle having an equal
area.
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G. APPLICATION OF THE THEORY OF AEROFOILS TO THE SCREW PROPELLER.

32. The fundamental ideas of the serofoil theory can he applied step by step to the screw
propeller.  For the elements of the blades the Kutta-Joukoewski formula holds, viz, that the air
force is perpendicular to the velocity ¢ of the element with reference to the air and-that, per
unit length of the blade, it has the value pTc. Corresponding to what has gone before, vorti-

ces will arise at the blade, having a vortex strength per unit length equal to 3: + If we wish

again to construct a theory of the first order, that is, if we agree to consider as small the air
forces and the velocities produced by them, then again the proper motion of the vortices will be
small and therefore in a first approximation may again be neglected. The vortices then have
the shape of serew lines and form vortex ribbons which—if for the sake of simplicity we assnme
straight radial blades—have the shape of ordinary screw surfaces.

- The caleulation of the velocity field of a screw vortex is markedly mors complicated than
that of a rectilinear vortex and leads to functions which thus far have not been studied in detail.
In spite of this it is possible, as Dr. Betz has shown, to prove a series of general theorems very
similar to those of Munk for multiplanes. Since the velocity ¢ is not the same at the separate
blade elements, we must spesk of the *“ work lost” where Munk speaks of drag. The work applied
for the motion of the propeller is composed of two parts—useful work + work lost. The latter
in our ideal case, where friction is excluded, is transformed completely into kinetic energy of the
air, The kinetic energy stands again in close connectron with the vortex system produced by
the propeller. Detz proved, among others, the following theorems:

(1) If two elements of & propeller blade lie upon the same radius at distances z and ¢ from
the axis, then the work lost at the pomt £ due to the disturbance velocity caused by the air
foree at the peint # is equal to the work lost at the point x owing to the disturbance velocity
caused by the air force at the point £

(2) This theorem must be somewhat modified for two elements which do not.lie on the same
radius. It reads: The work lost atb the point £ due to the disturbance velocity caused by the
air force at the point % is of the same amount as the work which would be lost at the point x if
the screw vortex proceeding from the element at £ were to pass out forward in the prolongation
of the actual vortex instead of going baclkward.?

(3) Thislast theorem leads at once to the following relation for the sum of the two amounts
of work lost: The total work lost due to the mutual action of the air forces by two blade elements

at pointg 2 and # is the same as the work which would be lost at one point alone if the serew vor-

tex. proceeding from the other point were to extend to infimty bhoth forward and backward.

It is easily seen that this fheorem is perfectly analogous to the stagger theorem of section
24, for il the vortex of the inducing element extends in both directions, then the position of the
element itself on its own vortex strip is immaterial as far as the velocity field produced is con-
cerned.® It is therefore true of screws that nothing is changed in the total energy-loss if blade
elements are displaced in any way, without change of their air forces, along the relative stream-
lines passing through them (i. e., in this case, serew lines). This naturally is connected again
with the fact that the total amount of the energy loss depends only upon the final distribution
of the vortex systems, not upon the relative position of the places where the separate vortices
arise.

Theorem No. 3 will be of use to us alse in what follows. It can be made clearer by the fol-
lowing consideration. The field of the vortex ribbon of a lifting element dies sway very quickly
forward of the element, but in the rear it extends over the entire length of the path traversed.
If the sumis formed of the two mutual losses in work of two elements at the points & and ¢, we
can proceed, owing to the stagger theorem, to displace one of the two elements along its screw
line go far backward that its velocity field is no longer appreciable at the position of the other

—

13 [ this the sense of rotation of the transverse vortex is to be reversed,
1 The transverse vortex io this eass cancels aut complotely Ln the determination of the velosity field, since 1€ appears twite with opposita

senses of dreulation,
20167—23—14
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undisplaced element. At the same time, however, the influence of the labter element upon the
first is increased since its vortex ribbon, viewed from the new position of the first element, extends
as far forward as backward. The sum of the two mutual losses in. work is reduced in this manner
to the loss which the velocity field of the front clement produces upon the displaced one.t
(4) The most importantof Betz’s theorems, from a practicsal standpoint, furnishes the com-
plete analogy to Munk’s theorem concerning the wing system having the least drag, and, corre-
sponding perfectly to the statements in sections 27 and 28, may be expressed thus: The flow
behind a propeller having the least loss in energy is as if the screw surfaces passed over by the
propeller blades were solidified into a solid figure and this were displaced backward in the
nenviscous fluid with a given small velocity, The potential differ-
ence between the front and rear sides of a screw surface at one and
the same point furnishes, then, again the circulation T' of the corre-
£ sponding point of the propeller blade.
A short proof of theorem 4 will be given. For this purpose the
gy principal equations for the action of a screw must first be dedueced.
<@ i The screw is imagined to be displaced with the velocity v relative
v te the air, and to rotate at the same time with the angular velocity «.
A blade element at the distance z from the axis has then, with ref-
erence to the air which in the theory of the first order may be
assumed to be at rest, the velocity ¢, with the components v and 2w,  (See fig. 58.)
If no vortex were produced, then, with the assumption of & nonviscous fluid, an air force
dP would arise, which, according to the Kutts-Joukowski theorems, would be perpendicular
to the velocity ¢ and would have the value, for 2 blade element of length dz,

&e

Tz, 55— Velocity fleld near a blade
of a serew-propeller. .

dP = oTeds (73)

The force dP is decomposed into two components, of which the one in the direction of v
interests us specially, since it is applied to the screw. This component is

d8=dP . cos e=plzwds . (74)
The total thrust, if there sre n blades, is then
Ne= pw%f}i" x dx (7 5j
The other component _
dT=dP sin ¢=pTv dx (76}

furnishes a contribution as a torque to the rotation moment. It is seen at once that 4§ . v=
2T . zw, i. e., the useful thrustwork is equal to the work done by the torque hitherto used
in our caleulations. This depends immediately upon our assumption that the force dP is
perpendicular to the velocity ¢. But the screw blades sctuslly produce a vortex system and
we must ask as to the reaction of the vortex system upon the phenomena of a screw. We
shall assume, exactly as in the aercfoil theory, that we turn the blade prefile in such a manner
that the lifting forces desired by us actually come into play. Since we are interested here
merely in the loss in work ecaused by the vortex system, we have to do only with the drag
components caused by the vortex system. This depends, exactly as before, upon the velocity
component, perpendicular to the velocity of motion of the element, which in this case equals ¢.

We shall again designate it by w. The added velocity component w furnishes a drag in the
direction of motion equal to

dQ=dP §=pTw e a7)
The loss of work per second is therefore
dQ . c=plda . w . ¢ (=dP . w)

1+ Fhis process of thought ¢an be applied, naturally, in the same way to aerufoils and furnishes a convenient deduetion for the sum of the
drags Wi+ Wy
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If now, according to figure 58, we put c=v/sin E, our problent is to make a mimmum the total

lose of work
n ! T
L=pv:f Pwde (78)
1

The variation of this quantity must therefore be put equal to zero. We shall proceed, for
this purpose, similarly to the way Munk’s theorem was deduced in seetion 27, We shaly
change by small amounts the circulation at two places, which may reach from z, to 2,-da,
and from x, to =, +dx,, in such a manner that the total thrust remains unchanged. According
to equation (75) we must make

or, . z,dx, +8T, . xdx, =0 (79
Exactly as before the condition for the minimum is obtained if the loss of energy due to our
added eirculation remains unchanged. In order to calculate the loss, let us make use of
theorem No. 3 and sssume that the added wing forces are brought into action far behind the
propeller so that the loss is merely the product of the added air force by the velocity w*
which arises from the vortices of the propeller, and thercfore for the first slement is equal to

* TS
poil, - dr,, Omitting the constant fa,ct,or, we obtain as the minimum condition—

lsine
or, - sin dx1+ I‘z i dxz
from which is derived, making use of equatlon (79
3 %
BT M eonst. . (80}

2, Sin ¢, @, STt €,

We must compare this condition with that obtained for the velocity components normal
to a rigid serew surface, when this surface is moved backward with the e
veloeity w'. We then have (see fig. 59): T

wa = cos ¢,

But on a screw surface the pitch A is connected with the angle of pltch e
and the radius % by the relation A=3rx tan e e /
Multiplying this last equation with that for w., and solving, we get- e

2rw'z sin e

wa=" )

and therefore

—— — const. (81)
2 en ¢

On comparing (81) with (80} it is seen that by a suitable choice of w’ the
value of wa can always be made to agree with that of w*, which proves F6. —1ldealired voriex os-

tem of o serew eller.
Betz’ theorem. Few propelier

23. In order to learn more accurately the nature of the distribution of circulation which
we are seeking, we shall proceed as if the velocity field at great distances from the screw is pro-
duced by having the velocity w’ in the dircetion of the axis imparted impulsively to the rigid
figure composed of the serew surfaces. In a purely qualitative way one can see that with any
system of serew surfaces having a small piteh the air in the interior of the system is actually
aecelerated hackward, with, of course, the appearance of tangential velocity components whose
intensity is & function of the angle ¢ and is greatest for e=45". At the axis itself there is neither
an axial nor a tangential acceleration. Less simple are the conditions near the outer boundary
of the screw sulface where a flow around the edges of the surfaces ceours.

In order to obtain a quantitative statement, we shall for simplicity's sake next think of a
screw having a large number of blades. Our rlrrld figure consists, then, of a very large number
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of screw surfaces, lying close together, and therefore the air is led with difliculty into the interior.
When the impulse occurs it escapes in the direction of the normals to the screw surface, The
radial velocity components w, will be appreciable only in the neighborhood of the outer boun-
dary of the serew surfaces; further in, we may put it equal to zero approximately. For the
tangentisl components w, and the axial components w,, the relations hold, asis easily seen,

Wy =w™* 8in e=w’ ¢OB € 5N ¢

Wy =w% c0s e=w' cog’ e
The angle may. be -expressed by writing

v

y)
tan Emm =E=E (82}

In this, for brevity's s&ke,% =§ is put equal to #’ {r' is that radius for which the pitch of the

screw, tan ¢, =—=1). Then
!

. r %
SN 6= jon o AN COS 6= —== 83
_ Jri Y it (83)
and hence
. v’ 7
w = 0’ . ?'_”TI—? and wg=w’;}§:|_—x'g (84)

We must now determine the circulation arcund the separate blades as a funection of the
radius z. For a screw with » blades the total circulation of the vortices inside the circle of
radius 2 coincides with the line integral for the closed circle of radius x; this cirenlation must
evidently equal nl', where T is the cireulation of one of the screw blades at
the point . From this we have

~ 2mx - wy _ 2wr'w’ z* iy
r- 2 R Lt (50) &

The curve for I' adcording to equation (85} is shown in curve I of figure 62.

At the ends of the blades we would expect to hfive a decrease of the cir-
calation of the same character as found for aerofoils. An approximate treat-
ment, ¢an be devised in the following way: We imagine an infinite series of
aerofoils which have a distance apart ¢ and are not staggered and which
extend infinitely far toward the left. We mquire what is the most favor-
able distribution of lift near the ends of these aerofoile. The distance a is
then to be made equal to the perpendicular distance apart of the edges of
two consecutive blades of the screw, i. e., according to figure 59,

Fig, 60-=Conlprmad trans- .
formation
2’ _ ¥

b
="1og3 (:-c-l;). a=_C0s &= G (86)

The problem now, according to the procedure of section 23, may be sclved by seeking the po-
tential flow around the edges of the corresponding family of planes and by determining the dis-
continuity of potential at the planes. This problem may be solved without difficulty by means
of conformal representations. (See sec. 10.) It can be shown that the plane with the straight
cuts as shown in figure 60, which we shall call the z plane, may be transformed into the unit

circle (! plane) by the formula
2=%log} (t +l) ' (87)
583 i
The flow of figure 58 is transformed thereby into circulation flow around the unit cirele; in fact
+i¥=3Clogt
After a short caleulation, by elimination of ¢, we have

e & +2¥ _
z= log cos 5 (88)
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For the surface around which the flow takes place, and which is given by the streamline ¢ =
we have, therefore,
- @
z=—log cos 4

or
xr
o=+ cos ' ¢a (89

which gives the real values for negative values of . The potentials thus obtained or the
velocity equal to 1 of the fice flow (to obtain which £ must be put equal to g), which, aceord-

ing to what has gone before, give us the surface £”, form a picture such as is shown in figure
61. By means of this one can form a definite judgrhent as o how the circulation, and with it
the thrust also, decreases at the blade tips. We can replace the shaded portions of T I‘1gure 61
by a straight line, having an equal ares below it which, in accordance with

the integration performed, must lie behind the blade tips at the distance

o' =alog §= 0.2207a (90)

We conclude from this that, with screws also, the decrease of cireulation
at the blade tips has about the same effect as if the serew had a radius dimin-
ished by 0.2207a, and then the air would be considered uniform in every circle of
radius z (as would be the case for a serew having an infinite number of blades}.  p. g1 posentialob.

The properties found for the inmer portion of the serew and for its edge  talveabyibe fow of
may be combined into a single formula, which can be applied as an approxima-  "&™e%:

tion formula also for screws having a small number of blades. This formula is obtained by
= (=X}
multiplying the value in equation (85) by the expressmng cosTie s, which for large values

of T takes the velue 1. (For —g of formula (89} »—x is hers substituted, as is obvious.)

Thus we obtain the formula
pdy @ e
=T T jhygc t0sTe s (91)
The curve of T' according to equation (91} is given in figure 62, for a 4-blade serew and for
»'1r=1:5, which correspond to average conditions in practice.
The whole deduction holds, as has already been remarked, for screws which are not heavily
loaded. For screws with heavy loads an improvement can be intro-
duced by calculating the pitch of the screw surfaces formed by the

vortices, corresponding to the state of flow prevailing in the circular

. Asympfofe.  J

-
r_’ £ w7 1§ plane of the screw. Instead of writing tan & =x_1:o , Wwe maust write, more
_a

w
o ) V+ A
Fra, G2.—Distrivadion of circo- 2

Iatior. I Infintte number of e&xactly, tan £ = s In which V 1s the velocity of flight, since in

blades. 1L Four blades o iz o — =L
the distance of two worlices. 2
(See (g, .2 the screw digk plane half of the final disturbance velocities is already

A useful approximation is obtained if, retaining our formulae, v is put equal to V+“§ s

4

and thexefore r’ is put equal to V+ 2.

L
After the cireulation is known, the distribution of thrust and torque may be caleulated

easily by means of squations (74) and (78), and thus, following the method used in the aerofoil
theory, the requisite widths of the blades and angles of attack may be determined in order that
for a given working condition (i. e, #* and w’ given), in which the screw is to have the most
favorable performance, all the informat.ion may be deduced from the theory. By taking into

present.
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account the more exact velocity relations in the propeller-disk plane this information may
be improved.

The aerofoil theory has numerous further applications. An investigation of curved flights
specially of the moment—important in discussions of stability—around the longitudinal axis in the
case of a wing moved in a circle, is at present béing made, also the calculation of the moment
of a warped wing. A series of not unimportant single questions must wait for a further im-
provement of the theory, e. g, various conclusions specially concerning properties of profiles,
influence of curvature, etc., can be reached, if we pass from the lifting line to the case of & load
distributed also along the chord for the treatment of a wing seb obligue to the direction of
flight the assumption of a load distributed along the chord is necessary since in this case the
conditions contradict the “lifting line.”” Investigations of this kind, which can ba accom-
phshed ‘only by vory comprehenswe numerical ealeulations, were begun during the war but
since then, owing to a lack of fellow workers, have had to remain unfinisied. A similar state-
ment also apphes to the calculations of a flapping wing already begun, in which ene is likewise
forced to assume the lift distributed along the chord, since otherwise the result is indefinite.
Therefore much remains to be done.

MOST IMPORTANT SYMBOLS.
” =deﬂ5§it}"
v =valocity of the airplane.
w, ¥, w=velocity componentsin the X, ¥, Z diroctions. (In the case of an airplane X is in the direction of the
span of the wings, ¥is in the direction of dlight, Z is vertics).)
n; =dynamisal prassure,
=apan of a wing {* Breite™).
=chord of a wing (“' Tiefe™).
=gap of a biplane (* Hohe'").
=area of surface (=b . t) (“Fliche”).
=lift {*' Auftrieb ™),
=drag ("“Widerstand ”).

£y = %=lift coefficient {=2 K, “absclute”).

Cp= %mdrm coefficient (=2 K “absolute™).

P
o e “"‘“ﬁ‘

=angle of attack.
=circulation.
=valovity potential,
=sfream, funciion.
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I Z. F. M., 1§20, p. 1.)

—_ Schmubenpropeller mit goringsiem Rnergicverlust, mit einem Zusatz von L. Prandtl, Nachr, v. d. Kgl. Gosell-
schaftder Wiseenschaften, Math.-phys. Klasse 1919, 8.193. _(The Screw Propeller having the Least Loss of Energy,
with an Appondix by E. Prandtl. Nachr. Kgl. Gesellschaft dor Wissenschaft, Math.-phya. Class, Gottingen,
1819, p. 193.) _ :

—— Eine Erweitorung der Schraubenstrahliheorie, 2. F. M., 1920, 8. 105, (An Extension of the Theory of Screw
Jets. Z.F.HM. 1820, p. 105.)

M, Muxk: Beitrag zur Aamdyn&mlk dor Plugzeugtragorgane, ‘TB, Bd. I1, 8. 187. (Gontribution to the Aemdynanuca
of Lifting Airplane Members. TB., Vol II, p. 187 ) .

—— Isoperimetrische Aufgaben aus der Theorie des Fluges. Dissertation, Gittingen, 1919, (Isoperimetric problems
from the Theory of Flight. Dissertation, Gtingen, 1919.) .

C. WiesErseERaER: Boitrag zur Erklirung des Winkelfuges einiger Zugvigel. 2. F. M., 1914, 5. 225. (Contribution
to the Explanation of the Formation Flight of Migratory Birds. 2. I, M., 1914, p. 225.)

—— Experimentelle Prifung der Umrechnungsiormeln. In *‘Ergebnisse der Aerodynamischen Versucheanstalt 1.
Lieferung, ¥ Miinchen, 1921, 8. 50. (Experimental Ixaminatjon of the Fermulae for Relations between Aero-
foils. In ‘“Ergebnisse der Aerod ynamischen ¥ersuchsanstalt, ” Part T, Munich, 1921, p. 50.)

B, WORKS ON THE TWO DIMENSIONAL PROBLEM.-

W. M. Kurra: “Auftricbskiiite in strdmenden Flilssighoiton.” Illustr, acronaut. Mitteilungen, 1902, 8.133. Ausfibr-
lichere Abbandlungern in den Sitzungsber. der Bayr. Akad, d. Wiss,, Math -Phys, Klasse 1910, 2. Abh. und 1011,
8.65. {Forces of Liit in Flowing Fluids. Ilustr. acronaut. Mitteilungen, 1902, p, 133, More detailed papets
in the reports of tho proccedings of the Bavarian Acad. of Sclencas Math -Fhys. Clase 1910, 2d report,. and
1911, p. 65.)

N.J omm\gsm Ueber die Konturen der Traglichen der Drachenflieger. Z. F. M., 1810, 8. 261, “Aemdynamique »
aus dem Russtschen (bersetzi von Drzewiecki, Parig, 1916, {(On the Contoursof Airplane Wings, Z.F.M., 1910,
p. 281, “Aerodynamics” translated from the Russian by Drzewiccki, Paris, 1816.

. Grammer: “Die hydrodynamischen Grundlagen des Fluges.”” Braunschwelg, 1817, {The Hydrodynamic Princi-
ples of Flight. Brunswick, 1917.)

R. v. Misgs: Zur Theorie des Tragflichenanftriebs. Z. F. M., 1617, 8, 157, 1420, 8. 68 und 87. (The Theory of Lift
of Wings., 2. . M., 1917, p. 157, 1920, pp. 68 and 87.)

After this memoir was written, two papers, by R. Fuchs and E. Trefftz, on the theory of aerofoils appeared, hoth
of which discuss the theory of a monoplane and that of airplanes of least drag. . These papers are published in the
“Faitachrift fir Angewandte Mathematik und Mechanik,’ 1821, Heft 2 w. 3, Rerlin.
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The Mechanlsm of Flutd Resistance.!
By Ta. v. Kinumin and 1. Resacs,

The resiztance of a soltd hody moving with s uniform velacity in an unlimiled Nuid can be calenlated theoretically
only in the limiting cases of very slow motiion of small bodies or of very high finid viscosity. We are brought in such
cages to & resistance proportional to the first powor of the velscity, to the viscosity constant, and, for geometrically
gimilar systems, to the linear dintensions of ihe body. To the domwin of this *linear resistance "—-which has aroused
reuch interest, especially within receal years, on account of somne important experimental applications—has o be
oppozed the limiting domain of comparatively large velogilies, for which the so-called “'velocity aquare law” holds
with very good approximation. Ib thislatter donain, which embraces nearly all the important technical applications,
the resistance iz nearly independent of fluid viscosity, and is proportional fo the fuld dencity, the square oi the
velocity, and—again for geometrically similar systems --to o swrisce dimension of the body. In this domain of the
“aquare law” ia included the imiportant case of air resistance, becanse it i3 easy to verify, hy the calculation of the
largest density variations which can occur for the speeds we weet in aeronautics and airscrews, that the air compression
can be neglected without any seusible exror. 'i'he Influence of the compression first becomes important for velocitics
of the order of the velocity of sound, In fact, experiments show that the air resistance, in a broad range from the smali
speeds at which the viscosily plays a role vp to the large speeds comparable to the velocity of sound, is proportional
to the square of the veloeity with very good approximation.® Tn general, fluid resiclance depends upon the form and
the orientation of the body in such a complivated way that it is extracrdinarily difficult te predetermine the flow toa
degree aullicient for the evalnation of the resistance of & budy of given fona, Ly a process of pure calculation, ag can be
done by 0id of the Stokes formula in the case of very slow motions. We also will not sueceed in this paper in reaching
guch a solution, but will atill make the strempt to give o general view of the mechanian of fuid revislanee woithin the
émit: of the agquare low.

We can state the problem of fluid resistance in the following somewhat more exact way.

Sinee the time of the fundawentsl considerations of Qsborne Heynolds on the mechanical similitude of flow
phenomena of incompressible viscous ftuids of different deusity and viseosity and-—under geometyical similitude—for
different sizes of the system considered, it is known thai the resistance phatomenon depends upon a single parameter
which i a certain ratio of the above-mentioned quantities.  1I'hus the fuid resistance of 2 body moving with the uniform
velocity ¥ in an incompressible unlimited fluid smay be expreseed by a formula of the form *

(D Weul 1;5{(.5?8)
m
whel‘e

& 19 the vigcosity constant

p the fluid density

1 a definite but arbitrarily chosen lineat dimension of the body, and f (-% a function of the single variable
m

Dol . . .
R=~f—- We will call *Reypolds' parameter’’ the quantity R which hss a zeto dimension.

Theory and experimont show that for very small values of f—that it, or low veloeilies, o small bodies, or great
viseosity—the frnction f( {7} is very nearly constant; the resistance cociiiciont of the Stokes formula correspends to the
limiting case of /(") for R=0. The square law corresponds to the limitivg case of Ri=. We approach this latter case
the more nearly the smaller the viscesity x, so that in the Hhniting case of '=ec, the fuid cap be considered as
frictionless. And we can ask oursclves, to whut tmiting configuration docs the flow of the viscous fluid oround a solid
body texid when we pass to the Mmiting ezse of @ perfect fIeid?  'This is, accordipg to our view, the fundamental point of
the roaistance problem.

The fact that we obtain in thia case a resistance nearly independent of the viscosity constant—since according
to formmla (1) thia corresponds 1o the square low--allews us to conjecture that in this lmiting case the resistance is
determined by flow types suel as can oceur i 2 perfect Quid.

! Trangiation of the paper of Th. v. Kirman and H. Rubzch published in “Physikalische Zeitschrift,” Jan. 15, 1913.
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It is now certain that neither the so-called “continuous™ potential flow, nor the “discontinuous™ potential Aow
diecovered by Kivehlinf and o. Helmholtz, can expreas properly this limiting cape. Continnous potential flow dossnot
cauge any resistancs in the case of uniform motior of a body, as may be shown directly by &id of the general momertum
theorem; the thecry of the discontinuous potential flow, which, in relagion to the resistance problem has been dis-
cussed prineipally by Lord Rayleigh,' ieads to a resistance which is proportional to the square of the veloeity; the cal-
culated values do not, however, agree with the observed ones.  And, independent of the insufficient agreement between
the numerical values, the hypothesis of the ““dead water,”' which, according to this theory cught to move with the
body, isin contradiction to nearly all observatione. 1% is easy to see by sid of the simplest experiments that the flow,
when referred to a system of coordinates moving with the body, is not stationary, as assumed in this theory. Furthet-
more, in the theory of discontinuous potential motion, the suction effect behind the body is totally missing, while in
the dead water, which extends to infinity, we have everywhere the same pressure ag in the undisterbed Auid at a great
distance from the body. Buf according to recent measurements, in many cases the suction efiect is of first importance
for the resistance, and in any case contributes a sensible part of the last.

The reason whyin a perfect fluid the discontinuous potentisl flow, although hydrodynamically possible, isnotrealized
ie without any doubt the instability of the surfaces of discontinuity, as has already buen recognized by v. Helmboltz
and specially mentioned by Lord Kelvin.? A surface of discontinuity can be considered ag a vortex sheet; and it can
be shown in a quite general way that such a sheet is always unatable. This can alse be observed directly; observation
shows that voriex sheets have a tendency o roll themselves up; that is, we sce the concentration around some points
of the vortex intensity of the eheet originally between them. This ohservation leads to the question: Can there exist
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stable artangements of isolated vortex filaments, which can be considered g8 the final product of decemposed vortex
sheots? This question forms the starting point of the following investigations; it will, in fact, appear that at least for
the simplest case of uniplansr flow, to which we will limit oureelves, we will be led to a “flow pieture" which in all
respects corresponds quite well to Teality.

THE INVESTIGATION OF BTABILITY.

We will investipate the question whether or not two parallel xows of rectilinear infinite vortices, of equal etrength
but of inverse senses, can be 80 arranged that the whole system, while maintaining an invariable configuration, will
have a uniform translation and be stable at the same time. It is easy to see that there exist two kinds of arrangements
for which twro parallel vorlex rows can move with s uniform and rectilinear velocity. The vortices may be placed
one opposite the other (arrangetment a, fig. 1), or the vortices of one row may be placed opposite the middie peinis
of the spacing of the voriices of the other row (arrangement b). In the case of equality of spacing of the vortices in
both Tows, ag & consequence of symmaetry for the two arrangewments a and b, it appears that each vortex has the eame
velocity in the sense of the X axis, and that the velociiy in the sense of the Y axisis equal to zero, We have to answer
the question, which of these two grrangements is stable?

To illustrate first by & simple example the method of the inveatigation of stability, we will etart with the con-
gideration of an infinite row of infinite vortices disposed at equal distances [ and having the intensity ¢, and will study

€ GO the resistaucs of Rulds, Mathematloat and Physical Papers, Vol. T, p. 287, )
$ Mathematioa} and Physical Papers, Vol. IV, p. 215. Thiz paper contains a defailed critigne of the theory of discoutinyous moetdon.
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the stability of such a system. If we designate by x,, ¥,, the coordinates of the p—th vortex, and by z,, ¥, the
coordinates of the g— th the velocity impressed on the latter vortex by the former is given by the formule

=5 . ¥p—¥q
R T s r e pa——
v o Tp— &y

b M N . S
" 2n (”p_zq)z‘!‘(yp“.fq)g
These formulee express the fact that each vortex communicates to the other a velocity whick is normal to the line
joining them and is inversely proportional to their distance spart. Therefore the resultant velocity of the ¢—k vortex
due to all the vortices iz equal to .
da_tNY_ w—d
& 2r bep—xq 53-{—(3;9—3;0)’

p”“
%=_£ p—%q
de 27;=Huszp_xq)2+(?p_yq)

where p=g i3 excluded from the summation. [f now the vortices are disturbed from their equilibrium position, the
small displacements being ¢, 7, the vortex velocities can be developed in terms of these quantities, and we will
be brought to a system of differential equations for the disturbances £, w,, i. e, for small cscillations of the system.
Let us sccordingly put
%_—‘?’Z‘Fﬁ
Yp="

and, neglecting the small quantities of higher orders, we will gei

a T - Ta—1,
@t 2 L p- YT

D= —00

dﬂq 'Y Ep"‘fq B

& 32 _p=gP
p-—w

The differential equations so obtained, which are infinite in number, are reduced to two equations by the sub.
stitution

. €p=5ndw; ’?p=‘loeipw
These two equations are

o
db, eipp 1
dt Molx P
Pos—l
9%
dn,_ & eipy—1
@ by e A
P e
with pso
The physicsal meaning of this subatitution is easy to see: we congider a disturbance in which sach vortex undetgoes

the same motion only with a different phase ¢. Under such conditions we have to do with a wave disturhance and the

gystem will be called stable, when for any value of o, that is, for any phase difference between two consecutive vortices
the amplitude of the disturbance doea not increase with the time.

Let us inireduce the notation

u@:%EmW%:#Emwul
p-

Poact wan i)

The foregoing equations then take the form
%f =x(eho
&
B =%}k
Let ue put £, and 4, proportional to er; we will then find for each value of ¢ Lwo values for A, that is

A= Li(p)
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1t follows that the vortex system considered is unstable for any petiodic disturbance, because there is aiways
present a positive real value of », that is, the disturbance is of increasing amplitude.

Applying thie method in the case of two vartex rows we will find that the arrangement a, that is, the symmetrical
arrangement, is likewise unatable, but that for the arrangement b there exists a velue of the ratio 2/ (% i the distance
between the two rows, lis the distance bebween the vorticesin the row) for which the system is stable.

In both cases A can be brought to the form

4;.;?‘=:|:5(3 N2

whera 4, B, C'are funetiong of the phase difforance . The system will be etable if (C?—.4%) is positive for any valuenf .
For the symmetrical arrangement «, the functions 4, B, ("are expiressed by the formmtle:

®
1 A Vi—cospe-
““*”“W*E(‘gmﬁﬁ“z—wm
[ P
X“’\ p_p
B{yp) = pap;;),sin(pv)
p=I

) o
L ¥ ' S 4
Oyl I Yol o e
p=r
But for p=1x we pet

a(ry=2] ctgh2 (’" —tgk? (’” )]

Ctry=—ppr [ cten? (T)"*’gh’( )]

o that this arrangement is unstable for any values of & and I.
For the unsymmatrical arrangement & we find

[-+)
PPV oo )
“*””'i‘/ﬁ(ﬁ—mw i

P
(p+3yP-—»

C‘(w)=2 @EIE—R o0 (p+1)e
L GHP T

We see now that £{r)=o0, 50 that in the place where po=w, 4 must also be equal to zere, because, on sccount of the
doubla sign, A takes a positive real value. This brings us to the conditien

= {(p AR \m\ 2
Jitp P+ n.é:b(2p+1)”r"

But
2 (p-+-321—h?
p-o[ P 5*?3'4-?:9}’ 2 oosh""h
and
S ¢ _x
TP
Pp=
so that, 68 the necessary condition of stability we find the relation
cosh}-hf=1f2'
and for the ratio kI we find the valus Mi=0.265...
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For a certain value of the wave length of the disturbance, corresponding to p=n, we get A=0, that is, the system
is in a neutral state. Bui it can he shown by calculation that our sysitem is stable for all other disturbances. ‘Fhis
unique disturbance haa to be tested by further investigations. It can, however, be seen that a mero value for A must
appear, because onky one stable configuration exists, IF this were not e, we would find for If4 a finite domain of sta-
bility .

THE ““FLOW PICTURE."

The congideration of the queation of stability has brought va to the result that ihere exists a particular config-
uration of two vortex rows which is stable. The wvortices of both rows have then such an amrangement thai the
vortices of one row are placed opposite the middle of the interval between the vortices of tho other row, and the
ratic of the distance » between the two rows to the distance ! between the vortices of the same row has the value

h —
T=1lr are cosh /2=0,283
The whole system has the velogity

S b

Yl R ER
p=c

which can also be written

u=2%tg h-%}z
or, introducing the value of A/l found by the stability investigation, we get
__£
TLE
The flow is given by the complex potential {y poteniial, ¢ flow function)
sin (z,~5)F

sin (z°+z)%

L
x=¢+1\b="2—i i

where ki
{
20—;;4-2—

By aid of this formula we have calculated the comesponding streamlines and have represented them in Fig, 2,
We see that ssme of the streamlines are closad curves around the vortices, while the others run betwesn the vortices,
On the other hand, we have tried to make visible the flow picture behind
a body, e, g.,  flat plate or circular cylinder, moved through immobile
water, by aid of lycopodium powder sifted on the surface of the wator, and
to fix these pictures photographically {exposure ope-tenth of a second).

The regularly alternaied arrangement of the vortices can not be
doubted. In most casea the vortex centors can aleo be well detsrmined;
sometimes the picture is disturbed by small “‘accidental vortices” pro-
duced in all probability by small vibrations of the body, which in our pro-
visional experiments could not be avoided. We had a narrow tank whose
floor wag formed by a band running on two rolls, and the bodies tested
were simply put on the moving band and carried by it.  Itis to be expected
that by aid of an arrangement especially made for the purpose much more regular flow pictures conld be obtained,
while in the actual experiments the flow was disturbed on the one hand by the vibrations of the body and on the
other by the water fiow produced by the moving band itself.

The alternated arrangement of the vortices rotating to the right and to the leff can only be obtained when the
vortices periodically run off first from one gide of the body, then from the other, and so on, so that behind the body
there appears a periodic motion, oscillating from one side to the other, but with such a regularity, however, that the
frequency of this oncillation can be estimated with sufficient exactness. The periodic character of the motion in the
so-called “ vortex wake™ has often been observed. Thus, Bernard # hag remarked that the flow picture behind a
narrow obstacle can be decomposed into vortex fields with alternated rotations. Also for the flow of water around
balloon models the cacillation of the vortex field haa been observed:® Finally, v. 4. Botne * has obaerved and pho-
tographed recently the alternated formation of wortices in the case of air flowing around different obstacles. The

Fig. 2,

1 From & mathematical standpoint our stability investigation may be considered ss a direct appiication of the theorems of Mr. Q. Toplits on
Crelanten with an infinite nutbet of elements, which he has in part published in two papers (Gottlngen Nachrichten, 1907, p. 110; Matk. Annalan
1911. p. 351}, and in part been so kind as to communieste personglly to us.

* Comptes Rondus, Parls, 145, 539, 108,

¥ Techuiesl report of the Advisory Committes for Aeromautios (British), 195011,

{ Undertaken on the Initiative of the rep tatives of tical sof i Gotiingen, Novenber, IL

61



62 .

AN IRTRODUCTION T¢ THE LAWS OF AIR RESISTANCE OF AEROFOILS.

phenomenon could not be explained until now; according to our stability investigation the periodic vatiations appear
as a natural consequence of the instability of the symmetrical flow.?

It is also very interesting to obaerve how the stable configuration is established. When, for example, a body ie
get in motion from rest (or converssly, the stream iz directed onto the body) some kind of ““separation layer” ia first
formed, which gradually rolis itseli up, at first symmetrically on both sides of the body, till some small disturbance
destroys the symmetry, after which the periodic motion starts. The oscillatory motion is then maintained corresponding
to the regular formation of left hand and right hand vortices,

We have also made a second series of photographs for the case of a body placed st rest in a uniform stream of
water, For this case the flow picture can be obtained from Fig. 2 by the superposition of a nniform horizontsl velocity.
We will then see on the lines drawn through the vortex centers perpendicular to the stream direction, some ebbing
point whete the stream lines intersact and the velocity is equal to zero. However, in the same way a3 the motion is
affacted by the vibrations of the experimental body in the case of the motion of a body in the fluid, so in this case the
turbulence of the water stream gives rise to disturhances.

As to the quantitziive agrecment attained by the theery, it must be noted that our stability conditions refer te
infinite vortex rows, so that an agreement of the ratic A/l with the measured valuesis to he expected only at a certain
distance from the body. The messurements on the photographs show that the distance { between vortices in 2 row is
very regular, so that ! may be measured satisfactorily, but per contra the distance A is much more variable, because
the disturbance of the vortices takes place principally in the direction normal to the rows, that is, the latter underge
in the main transverse oscillations, The hest way to determine the mean positions of the cenfers of the vortices would
be by aid of cinematography, but we can also, without any special difficulty, find by comparison the mean direction
of sach vortex row directly from photographs. 8o 1in the case of the photograph of s circular eylinder 1.5 cm. in diameter,
when making measurements beyond the first two or three wortex pairg we have found the following mean values for
hand?

h=21.8 em.: I=6.4 em.
S0 that for the ratio &/f we obtain the value

B/1=0.28,
For tha flow around a plate of 1.75 ¢m, breadth we found

=3 em.; =98 cm.
Accordingly

h/1=0.305.

The agreement with the theoretical value 0.283 is entirely satisfactory.

For the firat voriex pair behind the body, Afi comea out sensibly larger, spomewhers near 4/1=0.35. But in the firet
investigation of Kérmin, mentioned at the beginning of thia paper, the stability of the vortex system was investipaied
in such a way that ali the vortices with the exception of one pair were maintained at rest and the free vortex pair con-
gidered oscillating in the velocity field of the others. Under such assumptionsit wasfound thet Afl=1/r stc cosh+3 =
0.36. Wa therefore think that the conclugion can be drawn, that in the neighborhood of the body, where the verticea
are even more limited in their displacements, the ratio 4/l is greater than 0,283 and approzches rather the value of 0.36.

APPLICATION OF THE MOMENTUM THEQREM T THEE CALTULATION OF FLUID RESISTANCE.

Lot us assume that at a certain distance behind the body there exisis 2 Sow differing but slightly from the ene
of stable confizuration which we have established theoretically in the foregoing, but that at a distance iz front of the
body, which is great in comparison with the size of the body, the fluid is at rest—as it is quite natural to assume.
Wae will then be brought by the application of the momentem theorem to & quite definite expression for the resistance
which a body moving with a uniform velocity in 4 fiuid roust experience. Practically, by such a calculation for the
uniplanar problem, we will obtain the resistance of a umit of length of an infinite body placed nermally to the plane
of the flow. '

We will use a system of coordinstes moving with the same speed w as the vortex system behind the body. In
this coordinate system, aceording to our assumptions, at o sufficient distance from the body the vortex ntotion behind
the body as well aa the fluid state in front of the body will be steady, abd we will have, when referred to this system
of coordinates, a uniform flow of speed —u in front of the body, but behind the hody the velocity components will
be expressed by

4

_u—i—ETy and —%

where  ig the real part of the complex potential
g st
x=ptw=g lyg ——
8in (2—2) 5

¢ The tone that is sinitted by a stick repidly displaced 10 air 15 0xed by this perieiclty, 40 which Prof, C, Ruoge has already drawn our
"““ntlon. .
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"The body itself has, relative to this syetem of coordinates, the velocity ¥'—u, where U is the absolute velocity of the
body. If we designate by I the distance between the vortices of one row, there must take place, as a consequence
of the displacement of the body, in the time T=li{ U—u), the formation of a voriex on each side of the bedy. We
will calculate the increment of the momentim, along the X axis, in this time interval T (that is, between two instanis
of time of identical flow state) and for & part of the flow plane, which we define in the following way (see fig. 3). On
the sides the plane portion considered is limited by the two parallel straight lines y=cxt»; in front and behind, by
two straight lines #={onst. Jisposed at distances from the body which are great in comparison with the size of the
bedy, the line behind the body being drawn so as to pass through the point half way between two vortices having
inverse rotation. When the boundary lines are sufficiently far from the body we can consider the fluid velocities at
those lines as having the values indicated in the foregoing.

For a space with the boundaries indicated above the relation must exist that the mementum imparted to the

body fDWdt (where W is the resultant fuid resistance) is equal to the difference between the momentum contained

in the space considered at the times f=r and #==r+ 7 and the sum of the inflow momentum and the time integral
of the pressure along the boundary lines. If we thus consider as exterior forces the foree — Wand the pressure, which
act on the whole system of fluid and solid, they must then correspend to the increment of the momentum—that is,
to the exeess of momentum after the time 7 less the inflow oomenfum,

Y -

yep ¥ 1)

e =
—B = ¥
g~
] ¢ —
b 7 y: # -
Fia. 3,

We will calculate these momentum paris separately. The excess of momentum after the time I'is equal to the

difference of the values that the double integral pff u (z, y) dz dy takes ai the times i=r and t=+s1} 7. But the
“time interval hag been chozen in such a way that the siate of Aow ie identical, with the difference that the body has
been displaced through the distance I=={ F—u} " The double integral reduces thus to the difference of the integrals
taken over the strips ABCD and A’B'C*I¥ both of breadth I. For the strip 478/’ D/ the fluid speed can be taken

equal to —u for the strip ABCD equal m—u+g~% eo that we pet

i r,'b
L= f Sz dy
¢ -

If we pass to side boundaries having y—u» , we obiain for X, the very simpls sxpression
Li=pth

which can also be obtained directly by the application of the general momentum theorem to voriex systems.

We will unite in one single term the inflow momentum and the time integral of the pressure, hecanse in such s
way we will be led to more simple resulte.  If we constder s uniplanar steady finid motion with the velocity com-
ponents % (x, ¥) snd v (z, ¥} and consider a fixed contour in the plane, the inflow momentum in a nnit of tine in the

ditection of X is expressed by the closed integral pf(@dy—ﬁdx) where #, v are the velocitics on the contour. The
pressure gives the resultant ff:f dy along the X axis, but since for a steady fow the relation

12 L gF

p==00n8t--pu -;1:

wust hold, we thus obtain for the sum of both integrals, multiptied by 7'
L= T p(wdy—wnde)+ T f dy
= m
=1’]::J‘(b5 5 ¢ dy—u’udx)
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Or, introducing the complex quantity, o ) o

- ey o
W=t g =0
L=p Im f (Gﬁdz)

whete I is to be understood as the complex part of the integral.
If we put for the eontour

we got

u=—ytu’
o=y

then the terms in «2 will at once be eliminated, and slso the terms in # on account of the equality of the inflow snd
outflow; and there will remain only the termain w/* and w'v', The latter will give & finite value only for the boundary
line passing through the vortex system (AD in fig. 3). Passing to y=w, we get

oo
L—ToFn (if&x- "t
-

and integrating along AD we get
z(fw)
L= Tpfm[ &Fdx]
xl{ ==t
But
i cop 2XX
de T USNT T
T
80 that, integrating and introducing the values
atbsy=s

xtry==t i

tuh _ ¢?
r=n[P-5]
where « again has heen written iorg% tghr—;‘—

Thus the total momentun: imparted to the body s

[ Widtompth—Tp (%-51)

If for the mean value of Yy | Wt wo write W (as the time mean value of the resistance) we will obiain with
e .
Te=lf{ U—w) the final formula

an W o (D=2t 5y

The Auid resistance appears here expressed by the three characteristic constants I, k, 1 of the vortex configuration
{ae ¢ is expressed by the laat). In the deduction of this last formula we did not take account of the stability condi-
tions, so that this formula applies to any value of the ratio #/l. If we assume the vortices in the row to be brought
all close together so that they are uniformly distributed along the row, but in such s way that the vortex intensity per
unit of length remsins finite, we thus pass to the case of continuous vortex sheots. In this case §7= 1T, but {2fl=0

and 1e:=%r: 80 that the fluid resistance disappears. The discontinuous potential flow of v. Helmholtz thus does not
give any resistance When the depth of the dead water remains finite, as can also be shown from general theorems.
THE FORMUEAS FOR FLUID RESISTANGE.

Let us now apply to our special case the general formuls we bave just found, introducing the relations between
tand u,and h and [ according to the stability conditions. For the speed u we have

£
u=w=8
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turther,
hfl=02923
#0 that we get

w-=pz[o,2ssv'§.u (U—zu)+—§u2]

If we introduce, as is ordinarily done, the resistance coefficient according to the formula
W=y pd U?

where d it & chosen characteristic dimension of the body, to which we refer the resistance, we will ebtain i, oxpressed
by the two ratios «/ T and Ifd in the following wey

(ILI) xr,,s[o,ms%—o,s%(g)r]é

We have thus obtained. the resistance coefficient—which before counld be observed cnly by resistance measurements—
expreesed by two guantities which can be taken directly from the flow phenomenon, viz, the ratio

% _ Velocity of the yortex system
T Velocity of the body

and
1 Distances apart of the vortices in one row
d Reference dimension of the body

Both quantities, corresponding to the similitude of the phenomenon, within the Hmits of validity of the square law
can depend only upon the dimengion of the body,

These two quantities can be observed very easily experimentally. The ratio I/d can be taken directly from photo-
graphs, while the ratio uf I7 can be found easily by counting the number of vortices formed. If we designate by 7 the
time between two identical flow statez we can then introduce the quantity l,= U'T, which is the distance the body
moves in the peried 7% This quantity must be independent of velocity for the same body, and the ratio If], for similar
bodiea must also be independent of the dimensions of the body but determined by the shape of the body. Remember-
ing that T's=1{{ 7—wu), we then find between uf I and /i, the simple relation

W i
T=1-y,

By some provisional measurements we have proved the similitude rule and afterwards calculated the resistance
coafficient for a flat plate and a cylinder disposed normal to the stream, for the purpose of seeing if the caleulated values
agreed with the air registance measurements, at Yeast in order of magnitude.

Qur measuremenis wers made first on two plates of width 1.75 and 2.70 cm. and 26 cin., length, and we have moas-
ured the period T and calculated the quantity l,=UT {or two different velocities, We bave used a chronograph
for time measurements and the period was observed for each vortex row independently. Thus was found for the
narrower plate

U=10.0 em/feec 15.1 emfaec
T=1.262ec 0,300 zec
Ur=12.6 em 12.1 em
for the wider plate
U'=9.6 em/sec 15.5 emfsec
P=1.99 gec. 1.20 see.
TTr=19.1 sec. 18.6 sec.
Mean value UT'==18.% om
The ratio of the plate width is equal to
2. ;0_1_54
snd the ratio of the quantities ly=I'T iz equal to
8.5 152
12,377

So that the similitude rule is in any case confirmed.
A circular cylinder of 1.5 cm. dismeter was also teasted at twoe speeds.  Wo found the values

U=11.0 emfsec 15.8 emfsec
T=0.86 sec. 0438 sec,
Fr=13cm Them

Mean value UT=7.4 em
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Kuowing the values of {;=UT we can calculate for the plate and the cylinder the speed ratio «/U. Thus,

for the plate uf U=0.20,
for the cylinder uf U=+0.14

and with the values of [ indicated before we have

for the plate Ifd=5.5
for the cylinder lfd=4.3

where d is the plate width or cylinder dismeter. We thus find the resistance cosfficients

for the plate y,=0.80
for the eylinder ¢, ==0.46

The resistance measurements of Foppl® have given for a plate with an aspect ratio of 10:1 the resistance coefficient
e =0.72 and the Eiffel? measurements, for an aspect ratio of 50:1; that iz, for a nearly plane flow, the value ¢, =0.78.
Further, Foppl has found for a long circuiar cylinder y,,=0.45, 80 that the agreement between the calculated and megs-
ured resistance coeflicients must be considered as fully satisfactory.

The theoretical investizations hete developed onght to be extended and completed in two directions. First,
we have limited ourselves to the uniplanar problem; that is, to the limiting case of & body of great length in the direc-
tion normal to the flow. Itis to be expected that by the investigation of steble vortex configurations in space we will
alao be brought to a better understanding of the mechanism of fluid resistance. However, the problem is rendered
dificult by the fact that the translation velocity of curved vortex filaments is not any lenger independent of the size
of the vortex section, because to an infinitely thin filament would comrespond an infinitely great velocity. Never
theless, it must not be considered that the extension of the theory to the case of apace would bring unsurmountable
difficulties.

Much more difficult appears the extension of the theory in another direction, which reafly would first lead to a
complete understanding of the theory of Suid resistance, namely, the evaluation by pure caleulation of the raties
Ijd and w T, which we have found from flow chservations, and which determine the fluid resistance. This problem
can not be solved without inventigation of the process of vortex formatien. An apparent contradiction is brought out
by the fact that we have used only the theorems established for perfect fluids, which in such a fluid {frictionless flnid)
no vortices can be formed, This contradiction is explained by the fact that we can everywhere neglect friction except
at the surface of the body. It can be shown that the friction forces tend to zero when the friction cosfficiont decreases,
but the vortex intengity remaine finite. If we thus comsider the perfect fluid as the limiting case of a viscous fluid,
then the law of vortex formation must be limited by the condition thai only those fluid particles can receive rotation
which have been in contact with the surface of the hody.

This idea appear firat, in a perfectly clear way, in the Prandtl theory of Auids having small friction. The Prandtl
theory investigates those phenomensa which take place in a layer at the surface of the body, and the way in which the
separation of the flow from the swface of the hody occurs. It we could succeed in bringing into velation thege inves-
tigations on the method of separation of the stream from the wall with the calculstion of stable configuration of vortex
films formed in any way whatever, 3 bas been explained in the foregoing pages, then this would evidently mean
great progress.  Whether or not this would meet with great difficulties can not at the present time be stated.

1 80 the work of O. Feppl already mentioned,
16, Eiftel, “La Reslstance do I*Alr ot 1" Aviation,” p. 47, Parla, 1910,

O
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PRESSURE DISTRIBUT ION ON JOUROWSKI WINGS.*
By Ctto Blumenthal.

In the winter semsster of 1911-12, I described, iﬁ a lec-
tfure on the hydrodynanic bases of the problem.of flight, the
potential flow about a Joukowski wing.*¥ In connection with
this lectpre, Karl Toepfer aﬁd mrich Trefftz computed the
pressure'distribution on severasl typical wings and plotted
their results. I now publish these diagrams accompanied by a
qualitative digcussion of the pressure distribution, which
sufficiently indicates the various possible phenomena. For a
quicker survey, I have divided the article into two parts,
tho first part dealing with the more mathomatibal and hydrody-
namic aspects and the sccond part, whioch ig comprehensidle in
iteelf, toking wp the real digcussion from the practical stond-

point.

* From "Zeltschrift fir Flugtechnik und Motorluftschiffahrt,!
Mey 31, 1913.
** 322 sbove wagazine, Vol. I (1910), p. 2381.
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I

We obtain the entire muaber of all Joukowski wings of the

“length 21 with the trailing odge at tho »noint =x= - 1, by
laying, ina £ =4£ + i1 plane through the point { = 1/2,
the clustcr of all the circlos which'oontéin the point ¢ = 1/
either ineide or on their cirocumference, and plotting these

circles by meang of the formuls

z = ¢ +‘§%— - .(1)

on the z=x+ iy pldne. The circles, which contain the
point' { = 1/2 on their circumference, thus become doubly in-
tersected arcs and, in particular, the circle, which has the

distance (-1/8, + 1/2) for its diameter, becomes the recti-

n

By

linear distance of the length 21 . The circles which contain

the point ¢ = 1/2 inside, furnish the real Joukowski fig-

ures. The point { = ~1/2 passes every time into the sharp

trailing edge. The individual Joukowski wings arc character—

izod by the following quantities (Fig. 1). The center M of
the circle X is comected with the point X, ¢ = - 1/2, and
the point of interscotion of this connecting line with the
axig is designated by- M'. The distance  O¥' on the M axis

is equal %o half the_hoight of the arc produced by describing

the circle about M! as its center and is therefore designated

by £/2, as balf the camber of the Joukowski wing, £ being

its first characteristic dimension. We have chosen as the
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sccond charactoristic dimension, the radii Gifference MM! = &.
Thig gives a measurcment for the thicikness of the Joukowski
wing.

We will now consider the determinagtion of the velocity
and pressure digtribution which produce an air flow along the
wing, in infinity, with the velocity ¥V at an angle of T
with the positive x axiz, B being the angle of attack of the
wing.

The abvsolute velocity q of this flow is calculated thus:
If K (i,ﬂf ig the absolute velocity of the air fiow, of ve-
locity V and angle of -attack B, around the circle X in

the ¢ vnlane, then

q (ij) fand M,

It ig, nhowever,

l‘é‘

2
{ P 2 .
A o TR

Pf‘t‘

a

and zlong the circle K

k (£ ,n) = z ' 2V (¢ sinB + 1 cosB) + ¢,
ﬁié_t___ SN

where 2 7 ¢ 1is the circulation. This constant is detorumined
according to Kutta, by the condition that the velocity at the
trailing cdge is finite and therefore, since dz/dt there dis
appears, & must also disappear at the point  H. Thus we ob-

tain
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) P—— 21t +
JZ-—~133+ 2+ 6 ,l.\

D\J!c-—‘

) sinB + M cosB|,

<o
5
+
Hy
[(%
4
AT .
Q .
f\J
c‘—l'
-+
[
fus
.3

Tnis rathoer involvod coxpression is simplified by the in-
troduction of a new vsriable, the angle w at the center of
the circle X, measvred fyom the radius MH. In this angle,

the coordinmates £,n and the quantitics connected with them

are ¢Xorgsged asg follows: For abbreviation, we designate the

N M + &

radiug of the cirele K with » = and introduce

the angle 4 by
' 1 . _ £
J B+ £ o+ £

cog A =

The geometric significance of A4 and w is obvious from Fig. 1.

By slmple calculations we now obtain

E = - §+2rsm§sin<3+.@>,
t (3)
M=-~-2r sin—uos<%+ﬂ\,
& = -li— :.,l r sin L.3in /% + 4) + 4 r2 sin? @
& a R 2
4)
ml£+4rsm—°;f- [551n§~§~oos (§+ﬁ>] '
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Formula 2 for q is simplified by the introduction of the

angle w, to

{
#- 2
i . I"%
Icos(g + A+[3\!' """""
2 / -
—_ - . 5 2 (J)
/0052 (§+ A::-+-£% ['5 sin%-%c{}s(%ﬂ- A)J
=
- Gz F
Ty

From this we next derive a few general results which hold
good for all the quantities £,58, B.

a) On the trailing edge %‘ = -él- cos (4 + B).
T

b) On top of the wing, there is always a portion along
which the velocity q > V, hence where there is a negative
pressure. As proof of this, we will consider thg center of

30

the upper side, the point @ = 5 - A+ At this point ¢ > r,

ag can cagily be secn geometrically (Fig. 1) or from formula 4.

Howgver, if we put ® = %—11 - A in formla 5, it then becomes
To_ A BN
’_9;|z 0-2 cOS8 4_ 8 B.r l
v L Fmo_ AN/ Z N
T3 o8 Y T 3, J1+?<6+§,’
T A /oA e)
e o) N Te 2 53)
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¢) The velocity is zeoro at the point @ =1 - 24 - BE,
which is always located on the lower gide. At this point the
stroamlinc'enters the winge Further general conclusions (i.e
applying to all f, &, B) can hardly be drawn. We obbain
cdnsidorably nore accurate expressions in the GSpecially'int-
ercsting practical case where, in the vicinity of the leading
edge, a pronounced velocity maximum and consequently a strong
suction is produced. We will coniine curgelves to this case
in all that follows. Hereby we can, in formula 5, first of
all disregard the slight fluctuation of the factor ¢° for
sumall Valﬁes of f and & and consider only the factor F,
which mist be alone decisive for the great changes in velocit

This factor, however, enables a simple explanation.

*

¥

For this purpose, we introduce the angle I = % +A+8B .

The entering point of the streamline then lies at V = /3,

where F dieappears. In general, we have

%? = (a2 + sirfB) tan® ¥ - 2 (ab - sinB coeB) tanV +
-+ (P + cos2 B ),
.:'..8_ .._.-!:-_ i I N (
a j{'(\ficzc:s (A +8) 831116),
b= 2 (5 sin (A + B) + £ cosB) [
Y 3 s
. J

Consequently, F attains its maximum value at the angle V,,

which is given by the formula

tan wﬁ - ab - 5inB cosfB
a® + s8in? 8

6)

(7).
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and this value is

5 QGCOS (A-%f} -

= -
T HAX

(71)

We now make the assurption, corresponding to the already
announced purpose of our investigation, that F has a high
maximum in relstion to the value of cos (A + B) on the trail-
ing ecge. We require, e.g., that Fp,, shall equal or exceed
drgj_ Thig is methematically the most favorable. Formula 77,
with the cdd of a rough estimate, then zives

——“/EBLf— sinB Z 6 cos [A + 8) (1+--—1§i__?)
_ J T
& cos (A +8) (1L + s8in A) ... (8)

With this insertion, the numegrater of $an ¥, is smaller than

- é% cos (4 + 8) {Ji?f%i—ii cosP -~ & gin (4 +B) (l~sing)]

i
L =]

For small f, & and £, this volue is always negative and tihere-
fore the maximum velue of F is ocssuned to be at a point lo-
catcd Detwesn the entering polnt and the trailing edge on the

portion of the surface belonging to the upper sidé.# +On the

* Generally the voint is located -on the upper side. It lies

betwzen the ontering point and the leading edge, only when &

is very smpll in comparison with f. For &6 = 0O, 1t lies oun
the lecding edee. : _
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other hond, it can be shown that the maximum is located not
far from the entering noint. Ia fact the greatly preponderat-
ing member in the numerator of tan ¥,, on acgount of formila
g, is cogB sinB. The casc is not quite so simple with tac
denominntor, which is

a2 + sirfB =

_.‘%.: lawosg (A+8) - & f cos (A+a)sin5+%tﬁsinza J

If we introduce into the first member, on the right side of
formila 8, the above limit for &, +the denominator is then
5 ;:ﬁ

i
or at most only uncsscntially* greater than - & cotB, which

smaller thon

shows that ¥ 1s cither smaller or at most only slightly grent-

er than %.+-3 B. The voint ®, at which F assumes its max-
imin value, is located between the cntcring'point of the stream-
line énd the upper side and, at most, only slightly farther

than 48 from the ontering point.

Lastly, it may be remarked that in foramula 6 for ?%, both
the powers, tar®y and tan V¥, appear o be rultiplied by
swmall coefficients. Both these wmembers therofore assume guite
large values for large values of %an ¥, i.e., in the immedi*.
ate vicinity of the entering ooint and the lending edge. Hence
F differs but little over the whole surface, with the excep-
tion of the specified region, from the value cos (A + B} on

the trailing edge and therefore only slightly from unity.

* "Unessentially" means that the deviations are of the order of
magnitude f£4 , 8/1 .

sin? B . Hence tan VYo 1is elther smaller
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11

The results of the computations in I are os follows: A
Joukowaeki wing is characterized by the throe dimcensions, namo-
ly, the length 231, the camber £ and the radil difference
§, which is expressed ia the thicknaSs:of-tha wing. To these
is added the angle of atback B. The points on the surface
are most conveniently computed with the aid of a variable w of
the 2ngle at the center of the circle in Fig. 1. .he forrulas
for the coordinates.will not be giﬁen here. In vpractice, a
graphic arocess is employed which is explained in the accompa-
nying note by E. Trefftz (pagee 130-131 of this same volume
of "Zeitschrift flr Flugtechnik und Motorluftschiffahrt.!)
We reguire only the following datai w = O gives the trailing
edge; © =1 - 34 (tan & = %J gives the 1eading edge and the
intermédiate values of w correspond to the lower surface of
the wings @ =T - 34 -~ 2B gives the entering point, i.e.,
the point where the air flow.strikes the surface and. hence
where the velocity is Zero.

The ratic of the gbsolute velocity q of the air flow

on the wing to the velocity V in infinity is given by

52 ' ]
%:-QTF (5)
)
/.2 ER .
T =.1_l?§;£1.4-6 ig the radius of the circle in Fig. 1 and
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¢ the distance OB in the same flgure. Both factors, ¢ and

F, depend on w. For smwall f and &, +the value of the factor
0—3

7
3

differs but little from unity. The vroperties of the fac-

tor F, as obtained by the calculations of I, can be summarized
as follows.

On the trailing edge, F has the value cos {A +B) and
decreases at the customary angles of attack (about 60), from
the leading edge- t0 the entering point, where it becomes zero.
For small f and 8§, +t1he decrease takes place very slowly
thrdughout’most of the lower side and first becomes rapid in
the immediate vicinity of the entering point.

¥rom the entering point, F increases rapidly and attains
near the leading edge, a maximum of the order of magnitude
Bl /28. This is approximately also the maximum value of the
velocity ratio g : V. For this maximum value, the ratic of
the angle of attack to the thickness of the wing is thercfore
decisive, the camber having, in the first order, no effect on
it. In constructive wing shapcs, where & and £ are of the
same order of magnitude, the velooity at the leading edge is
accordingly not very greab. This result 1s important because
it explains the effect of rounding the leading edge. The re-
sult is 8%111 more striking when we consider the radiug of
curvature p of the leading elge. It ig, namely, with unes-
sential omigsions %Q: 16 {; {1 - 4-%}. The :adius of curvature
therefore diminishes rapidly with decréasing 8, the rounding
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off of the lecading edge being very slight, and the ﬁaximum ve-

locity romeins within moderate bounds. The negative pressure

on the lecading eodge, which, according t¢ Bernouilli's equation,

is proportional to ¢2/V®, is computed by the introduction of

the radius of curvature in the first approximdtion, to

4 B° é« I consider this simple formula worthy of attention.
The course of F along the top of the wing can finally

be characterized as follows: At some distance from the leading

edge, F changes but slowly. If, therefore, the naxipum value

of F is much greater than'unity; it falls abruptly at first

and then gradually approaches the value at the traliling edgoe.
Only in the vieinity of the leading edge does the factor

F giﬁe us gufficiently accurate information concerning the

courgse of the velocity g. Everywhere slse we need to know

t¥We courss 6f ©. This can be easgily found geometirically from

Fig. 1. On the leeding cdge o has the value of 1/2. From

the triangle HMO, it follows that s ascumes its minimum value .

for the angle which 1lg given by

rin?

el | .‘k'

10 Wrdn - 2
. =2 2 . 2
sin A «/53008 A+ sgin A

Hence ' !
1

4,-62 4:?
/ﬁ*‘f

For the angle 2 Wpin, W again have 0 =

SN Wpipy =

% and then ¢
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increascs further, up to the angle Wpax = Wyin T 7+ The value
of ®,3, Increases with £/s . For §-= 0, Ymin = 0, Thecnee
the valug of ¢ ig smallest on the trailing edge and greatest
on the leading edge. Conversely, for % = 0, Wpin = (11/2) - A
and is theiefore gituated in the middle_of the lowerisurface-
In gencral, with increasing £/6, +the minimm value of &
moves from the trailing edge %o the middle of the lower sur-

face; the point where ¢ = again from the trailing odgs to

L
3
the lcading edge, while the maximum value of © moves siml-
taneously from the leading c¢dge to the middle of the upp e
surface.

In order to get an idea of the course of the velocity, we
must now cetimate the mitual effect of the factors F and 0°.
I will proceed with this discussion in close connection with
the diagramg, which I must first explain.: Their arrangernent
is the same as for the diagrams in Eiffel's "Resistance de
ltair.? Hoch figure has, at the bottom, an accurate oubtline
of the wing section. Vertically above each point of the wing,
there is plotted from-a zero line on the vertical the ratio
q2/v2, the upper curve corresponding to the upper side and
the lower curve to the lower side of the wing section. The
dached 1ine showe the unit distance from ihe zero lime. The
area enclosed by the ¢?/V® curve gives, when multiplied by

:L-Vg, the 1ift of a unit width of the wing. .The chogen an-

25
gle of attack is 6%(B = 0.1), the air flow being horizontal.
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I am dividing the discussion into several paragrophs.

1. The strong suction on the groater portion of the upper
surface is common %o all the figures. This is indecd the.ohief
source of the 1ift; while the pressure on the lower surface
contricutes only a gmall increment. This can be easily veri-
fied from the general laws.. In fach, as already sta%cd; F
diminishes very clowly along the under surface from the'tréi;-'
ing édge almost to the entering point. Hence F differs-bub
1ittle, on most of the lower surface, from the valuc
cos {A + B), which it has on the trailing cdge, and therefore.

- 2
only a 1littl¢ from unity. Since also the factor 2= falls

T3

only slightly bolow 1, up to the vicinity of the entering
point, g/V  is certainly not much smaller than one and hence

there is only a slight pressurc.

2. Fig. 32 (£ =0 and % = i%ﬂ indced shows a sucflon
gffect a2long a portion of the undcr.sido- Since. the valucs
of f are herc less than unity, such a suction efifect can
only be very small. Its appoaraﬁoe is due to rolatively large
values of ¢° and dcpends esscntially on the ratio f i 8.
Batween the tralling edgé and. @ = ZWp4, RO suction can otcur,
pecause o is here smaller than /3. Any suction cffect can
therefore be cxpected for only small values of £ ! O, where
O,qp 18 small. For 0= 0 any suction effect is entirely im-
possible, since B2w,;, then corresponds to the leading edge.
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The suction effect has olso becn cxperimentally delerained by
Tiffel on the ving "en aile d'oiseau" which vrobably alone of
all the surfaces tested by 1im can be compared with a Joukowski

wing section.*

3. Even on the upper side, the course of the velocity is
characteristically atfected by tae ratio T ¢ §. This is clear-
ly shown by Fige. 3-4. £/8 is e¥pressed on the upper surfzce

in the position of tre angle w + m, for which ¢

max = Yain
hag ite maximm value. The faet that O continmuiegs to increase
from the leading edpe &g far as W, ,, causes the maximum valug
of g to wmove farther from the leading edge than the maxizum
of F and the fall in velocity t¢ ve less rapid. We differ-
entiate "slightly cambered” wings (£5«<3), in which wpyy in
near the leading edge, and "highly cambered" wings (£/5>3),

in which ©p,x lies nearer the mlidle of the upper surface.
Fig. 2, with f = 0, 1is a typieal example of a slightly ceau-
bered wing. Here the maxirum value of ¢ 1ig situated in the
leading efige and the values of F and ¢ therefors decreoasc

* Biffel, "Resistance de 1tair," 1911, Table XII; alzo p. 105
and "Compleoment," p. 122 ("aile Nicuport"). The Eiffel fig-
ures show that the suction effect increascs on the undcr sice
with decreasing angle of attack. This is in azrcement with

our theory, for the ractor F increases, as shown by formuls
6, at evgry point on the under side with decreasing £. 4n-
other suction effect, which Ziffel finds on the trailing cdgc

of nearly all wings, is doubtless due to the formation of
vortices.
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simultancouslx,-thus prodﬁcing_a very pronounced maximum_véloc~
ity, although the maxirun velo¢ity is not importent in itsclf-
On the other hand, Fig. 4 (f/1 = 1/5, &/t = 1/20)  shows, in
spitelof a twice as large maximm velocity, a remarkably slow
velocity decrecase toward bthe upper side. In fact, in these
experiments, the maximum of o 1s situated ot about 1/3 of the
upper side and a norc rapid velocity decreasé accordingly
first bLegins behind this point. We note also the small inter-
nediate maximﬁm on the‘uppér cide, which is causcd by the in-
crease of ¢° in spite of the similtaneous decrease in F. The
mean between Fig. 2 and Fig. 4 1s held by Fig. 3, with
£ = 1/10 and BA = 1/30. Here wgp,y does not lie very far
from the lé&ding etge, about 1/6 of the upper side, the in-
¢rease in szvanishes-under the decrease in F and along the
greater portion of the upper side we note a uniform falling
off in velocity, due to the simultansous decrease in the fac-
tors T and ©F

These relations were also found in Eiffel'é experiments
with the wing "en aile d'oiseau." Even the intermediate maxi-
mum of g on highly cembered wings is found on his figures.*

Lastly, I wish to oall attention to the fact that the
neagurements of Fig. 4 appear to wme 50 be worthy of commenda-
tion, onxccount of the very uniform stressing of the upper

i
side.

* On Biffel's figures, it appears that, with decrcasing £,
the maximum velocity moves backward from the leading cdge on

the upper side. This also agrecs with the theorctical conclu-
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4, Fig. 5 has a very slight rounding (5/1 = 1/50) at
tfi = 1/5: Therefore % S = 2.5 and hence the very high ve-

- 1ocity maximum on the leading edge. We have already seen that
the high maxima must decreaée very rapidly toward the upper
side. The region of this steep decline corresponds to an angle
of about the size B . During the drop, however, there 1s in
the figure a long sﬁace of almost constant veldcify- This is
explained, ag in'paragraph 3, by the fact that the maximm
value of O is located at about 1/2.5 of the upper side. Omly
behind this point is there again a rapid decline to the trail-
ing edge. This behavior is generally characteristic for high-
ly cambered wings of glight rounding and ocours also on Eif-
fel's diagrams.

As regards the production of the diagrams, it may be noted,
in concliusion, that they were drawn according to the very con-
venient method of E. Trefftz, as set forth. in the accompanying
notes Wherever it appeared necessary, the plotting was veri-

fied by calculation.
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GRAPHIC CONSTRUCTION OF JCUKOWSKI WINGS.*
By B. Treiftz.

In plotiing the cross-sectionsl outling (or profile) of
a Joukowski wing, we proceed as follows {Fig. 8).

We first plot an xy system of coordinates with the ori-
gin O =such that the x axis forms the angle f with the hor-
izontal Girection of the wing and mark on the x axis the
point L, for which x = - 1, and on the vy axig the noint
¥, for which y = f.

We now describe two clircles and label them K, and K.

The center U, of the first circle is situatéd on the straight
line LF st a distance 25 from the point F (beyond the
section IF). The circle, moreover, passes through. the point
L. The second circle 1ikewise passes throuzh the point L

and its center s is iikowise on LF, the position of M

on LF being detcrmined by the following condition. If OW
is the portion of the positive x axis cut off.by the circle

X, =nd O the portion cut off by the circle K,, then
oV, x O% = 1%, |

We now draw, from the point O, +the two linss 04, and
042, =80 as to form equal angles with the x axis, 4, Deing
the point of intersection of the first line with the circle

K, and 4 the intersection of the second line with the circle

* From “Zeltqchrift flir Flughtechnik und Moterluftschiffahrt,”
Hay 31, 1913, pp. 130 and 131. -
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Kz- Then the centcr. P of the line A A is the point soughi
on the Joukowski wing prbfiléa

In plotiing the preceding figures; 34 noints were_found
Ain this mgnner. for each oneg, by shifting the first line from.
the point L 15° each time and drawing the second 1ine Sym—
metrically with reference t0 the X axisg.

In order %o determine the precsure on each point of the
profile, when the wing is exposcd %0 a horlzontal wind having
the velocity v;_ we must know the velocity ¢ &t which the
alr flows by each point of the profile. The pressure on each
unit area o:f the wing surface is then proportional: +0 o .

We can now find the values of q in a very simple man-
ner. qu this purpose, we draw a horizontal line.through_ﬁhe
point L. If we designate by h the Gistance of the poink
A; (of the cirele X,) from this hQrizontﬁi line, we Obtain,
for any desired point P of the figure, the corresponding
value of ¢ in the following manncr. We take from the dia-
gram the distance between the points A, and 4, at the mid-
dle of which we had found the point P, and also the distances
of the point A, from the origin O, from the center M; of
the circle K, and from the horizomtal line passing through
L. We then have

0 A s h

= ¥ .
4 Ay B My Ay

The mathematical proof for the given congtructions is sim-

Ple. Asg already mentioned, the'profile of a Joukoweki wing
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can be constructed by describing on the =z plane, with the aid
of the formula 2z = ¢ + %} » bthe circle K, determined by
the camber and radiil difference. This circle passes thfough
the point § = - -Z—

The systems of coordinates are plotted both in the ¢
plane and in the =z plane in such manner that the £ axis and
the x axis form the ancle B with fhe horizontai wind direc-
tion.

If we ﬁow degeribe, in the 2z plane, both circles, which
we obtain from the given cirecle X in the ¢ plane by employ-

ing the two conversion formulas

rm

Zy = 3¢ and Zz =

[av;
Ko

then these are the same two circles we designated above by
K, and Xs.
The point A, has the coordinate 2z, and the point A4,

hag the coordinate z,, hence the center of A, A, has the
x
4
therefors an actual peint on the Jouvkowgki curve.

coordinate 2 = } (z; + 2z) = { + as desired. P ig
The following forwmls hblds_good for the velocity g at

which the air flows by &very point on the Joukowski figure.

q = K (£ .n)
dz
24

=
From z = { + %f it follows that
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_@g_ = - -—L——,z—a = .-1— 2F . _13\ = ____._._21 —-_Zg._
d{ T iv ac(g B¢/ %y

whence we obtain

Ly As

0 &,

az| .
af

since the abgolute value of 2%, - 2z, equals the distance

A As and the absolute value of z, = the distance 04,.
For Kk (£,1), we obtain, from formula 2 of the preceding

article, k= 20 4n whnich h is the distance of the point

M, 4,°
4, from the horizoental line pagsing through L. In the ox-
pression there given for the numerator, it is equal t6 h and
the denominator is equal to 3(¥;4,), as may he easily veri-

ficde We thus obiain

which is just the formula given above for q.

Translation by Dwight M., Miner,
¥ationgl Advieory Committee
for Aeronautics.
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1y 1
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THE MINIMUM INDUCED DRAG OF AEROFOILS,

By Max M, Munk.

INTRODUCTION.

The following paper is & dissertation originally presented by the author to the University
of Goettingen. It was intended principally for the use of mathematicians and physicists. The
suthor is pleased to note that the paper has aroused interest in other circles, to the end that
the National Advisory Committee for Aeronautics will make it available to a larger circle in
America. The following introduction has been added in order to first acquaint the reader
with the essence of the paper.

In the following development all results are obtained by integrating some simpla axpre.%lons'
or relations. For our purposes it is sufficient, indeed, to prove the results for a pair of smali
elements. The qualities desalt with are integrable, sinue, under. the assumptions we are allowed
to make, they can not be affected by integrating. We have to consider only the relations
between any two lifting elements and to add the effects. That is to say, in the process of inte-
grating each element occurs twice—first, as am element producing an effect, and, second, as an
element experiencing an effect. In consequence of this the symbols expressing the integration
look somewhat confusing, and they require so much space in the mathematical expression that
they are apt to divert the reader’s attention from their real meaning. We have to proceed up
to- three dimensional problems. Each element has to be denoted twice (by a Latin letter and
by a Greek letter), oceurring twice in a different connection. The integral, thersfore, is sixfold,
six symbols of integration standing together and, accordingly, six differentials (always the same)
standing at the end of the exprassion, requiring almost the fourth patt of the line.  The meaning
of this voluminous group of symbols, however, is not more comp]icated and not less elementary
than a single integral or even than a simple addition.

In section 1 we consider one aerofoil shaped like & straight lme and ask how all lifting
elements, which we assame to be of equal intensity, must be arranged on this line in order to
offer the least drag,

If the distribution is.the best one, the drag can not be decreased or increased by izra,nsferrmg
one liftimg element from its old position {a) to some new position {(b). For then either the
resulting distribution would be improved by this transfer, and therefore was not best before, or
the transfer of an element from (b} to (a) would bhavo this effect. Now, the share of one element
in the drag is composed of two parts. It takes share in producing a downwash in the neighbor-
hood of the other lifting elements and, in consequence, & change in their drag. It has itself a
drag, being situated in the downwash produced by the other elements. :

i )
B

fig. /

Considering only two elements, Fig. 1 shows that in the case of the lifting straight line the
two downwashes, each produced by one element in the neighborhood of the other, are equal.
For this reason the two drags of the two elements each produced by the other are equal, too,
and hence the two parts of the entire drag of the wings due to one element. The entire drag

375
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produced by one element has twice the value as the drag of that element resulting from the
downwash in its environs. Hence, the entire drag due to one element is unchanged when the
element is transferred from one situation to a new one of the same downwash, and the distribu-
tion is the best only if the downwash is constant over the whole wing.

In sections 2 to 6 it is shown that the two parts of the drag change by the same value in
all other cases, too. If the elements are situated in the same transverse plane, the two parts are
equal. A glance at Fig. 2 shows that the downwash produced by (1) at (2), (3), @), and (5)

fr=d) )

= =t
2

3/ 5}

L =t
Fig. &

is equal. But then it also equals the downwash due to (4), say, produced at (1). This holds
true even for the compenent of the downwash in the direction of the lift if the elements are nor-
mal to each other (Fig. 3.); for this component is proportional x.y/r%, accerding to the symbols

4 e
i
i Erh Fig. 3.

of the figure. Henece, it is proved for lift of any inclination, horizontal and vertical elements.
being able, by combination, to produce Iift in any direction.

There remains only the question whether the two parts of the drag are also equal if the
elements are situated one behind the other—that is to say, in different longitudinal positions.
They are not; but their sum is independent of the longitudinal distence apart. To prove
this, add in Fig. 4 to the Lifting element (2) & second inversé lifting element (3) with inverse

Fig. 4 /7‘

linear longitudinal vortices in the inverse direction. The reader observes that the transverse
vortices (2) and {3) neutralize each other; the longitudinal linear vortices, however, have the
same sign, and all four vortices form & pair of vortices running from infinity to infinity. The
drag, produced by the combination of (1) and this pair, is obviously independent of the longi-
tudinal positions of (1) and (2). But the added element (3) has not changed the drag, for (1)
and (3) are sitnated symmetrically and produce the same mutual downwash. The direction
of the lift, however, ig inverse, and therefore the two drags bave the inverse sign, and their sum
is zero.

If the two lifting elements are perpendicular to each other (chapter 5), a similar proof can
be given.

Sections 6 and 7 contain the conclusions. The condition for a minimum drag does not
depend upon the longitudinal coordinates, and in order to obtain it the dewnwash must be
assumed o be constant at all points in a transverse plane of a corresponding system of aero-
foils. 'This is net surprising; the wings act like two dimensional objects accelerating the air
passing in an infinite transverse plane at a particular moment. Therefore the calculation
leads to the consideration of the two dimensional flow about the projection of the wings on a
transverse plane.
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Section 8 gives the connection between the theory in perfect fluids and the phenomenon
in true air, It is this connection that allows the application of the results to practical questions.

1. THE LIFTING STRAIGHT LINE.

A system of aerofoils moving in an incompressible and frictionless fluid has a drag {in the
direction of its motion) if there is any lift (perpendicular to the direction of its motion), The
magnitude of this drag depends upon the distribution of the lift over the surface of the aerofoils.
Although the dimensions of the given system of aerofoils may remain unchanged, the distribu-
tion of the lift can be radically altered by changes in details, such as the aercfoil section or the
angle of attack. The purpose of the investigation which is given in the following pages is to
determine (¢) the distribution of lift which produces the least drag, and (3) the magnitude of this
minimum drag.

Lt us first consider a single aerofeil of such dimensions that it may be referred to with
sufficient exactness as s lifting straight line, which is at right angles to the direction of its flight.
The length or span of this line may be denoted by I. Leb the line coincide with the horizontal,
or z axis of a rectangular system of coordinates having its origin at the center of the aerofoil,
The density of the lifs
ad W

A=

where A, the entire lift from the left end of the wing up to the point z, iz generally a function of
2 and may be densted by ¥ (x). Laet the velocity of flight be v,

The modern theory of flight* allows the entire drag to he expressed as a definite double
integral, if certain simplifying assumptions are made. In order to find this infegral, it is neces-
sary to determine the intensity of the longitudinal vortices which run from any lifting element

to infinity in & direction opposite to the direction of flight. These vortices are gemerally
dlstrlbuted continuously along the whole aercfoill, and thelr intensity per unit length of the
aerofoil is .
1 a4’

Y de @
~where pis the density of the fluid. Now, for each lifting element dx, we shall caleulate the down-
wash w0, which, in accordance with the law of Biot-Savart, is produced at it by all the Jongi-
tudinsl vortices. A single vortex, beginning at the point #, produces at the point x=§ the
downwash

1

Therefore the entire downwash at the point f Is
W L
T
1 dA’ 1 -
e @ @
i
-7

The integration is to be performed along the aerofoil; and the principal value of the integral is
to be taken at the point 2=¢. This rule also applies to all of the following integrals. Hence it
follows that the drag according to the equation .

aw

AW _ w2 . a4 | 5)

i ¥

-5 pf féﬁ’ Cpde g A . Ch

L 3o L. Prandtl, Tragdiigeltheorie, 1. Mitteilung, Nachrichten der (fes. d. wiss. 2 Grittingen, 1918,
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or, otherwise expressed,
i'

_2-!
W=4——1--— f ”) f (E)dzdf 6)
o
-1 -%

[’ here signifies the derivative of f with respect to « or £&. The entire lift is represented by

A= [f@) & | @)

Hence the solution of the problem to determine the best diséribution of lift depends upon
the determinstion of the function ¥ so that the double integral

+g+E
J, = J‘ f f(i_f_ drd & {8)
l
shall have a value as small as possible; whilo at the same time the value of the simple integral
a4
Jy= ff (#)dw = conat, ' (9)
[}
-7
15 fixed.
The first step fowards the solution of this problern is to form the first variation of .J,
6, = ﬂ 5F(2) de ’”(5 as}+f[ of! (e)dsf“”"caf (10)

The second integral on the 1'1ght side of (10) can be reduced to the first. By exchanging the
symbols ¢ and £ and by partial integration with respect to &, considering f'(£) as the integrable
Iactor, there is obtained

f of s f(%c} flﬁf(m)dm i1 i) )

'I _f

The second member disappears since =0 at the limits of integration.? Further, the right
hand part of (11)

f(fc)
E
-3
upon substitution o{ the new variables ¢ and t=x2—¢ for 2 and £, is transformed into

-4
d f (a: 1)
dx dt

1
=+T

211 this ware not trus, there woutd be infAnite veloeities at these points.
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Now

dzj'f(x fe=t) 4, (;) f( 2) ff’(x 1,

z+-§

or, since f disappears at the limits of integration,

:--% x—»&
Z (fo=t , (a1
= f =1= f 0 g

which, upon the replacement of the original variables, becomes

f’ (&) 2t
_E'
so that, finally,
+4 +4
ﬂa £ f e} - _f s {(:r;)dxff ¥ (12)
—% -z % ~%
Substituting this in (10) there finally results
_|_.'
it =2 |sr@d f’(E)dE (13) .
'} v

From which the condition for the minimum smount of drag, taking into consideration the
second condition (9}, is

or, when equation (4) is taken into consideration
w=const. =, {15)

The necessary conditidn for the minimum of drag for o lifting straight line is that the down-
wash produced by the longitudinal vortices be constant along the entire line.

That this necessary consideration is also sufficient results from the obvious meaning of

the second variation, which represents the infinitesimal drag produced by the variation of the
lift if it alone is acting, and therefore it is always grealer than zero.

2. PARALLEL LIFTING ELEMENTS LYING IN A TRANSVERSE PLANE.

The method just developed may be applied at once to problems of & more general nature,
If, instead of a single aerofoil, there are several aerofoils in the same straight line perpen-
dicular to the direction of flight, only the limits of integration are changed in the development.
The integration in such cases is to be performed along all of the aerofeils. However, this is
nonessential for all of the equations and therefore the condition for the minimum drag (equa-
tion 15) applies to this entire system of aerofoils.

29
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Let us now discard the condition that all of the lifting lines are lying in the same straight
line, but retain, however, the econdition that they are parallel to esch other, perpendicular to
the line of flight as before, and that they are all lying in a plane perpendicular to the line of
flight. Let the height of any lfting line be designated by z or {. Equation (3) transforms into
a similar one which gives the downwash produced st the point , z by the longitudinal vortex
baginning on the lifting element at the point {:

Logar ks (38)

= e M T T ot

The expression, which must now be & minimum, is

_ff[dmf(x? 2}] J&8 - :c)M—{;' z}zdfdw (88)

with the unchanged secondary condition
J,=_ff(a:, 2) dx =const. (9a)

These integrals axe to be taken over all of the aerofoils.
This new problem may be treated in the same manner as the frst.

—&

§—
G-+ G-z

is always to be substituted for E_}‘;? It may be shown thai this substitution does not
affect the correctness of equations (10) to (15}, Therefore

w=const, =1, (15a)

is again obtained as the necessary condition for the minimum of the entire drag.

Finally, this also holds true for the limiting case in which, over a limited portion of the
transverse plane, the individual aerofoils, like venetian blinds, lie so closely together that
they may be considered as a continuous lifting part of a plane. Including all cases which
have been conzidered so far, the condition for a minimum of drag can be stated:

Let the dimensions of a system of aeroforils be given, those in the direstion of flight being small
in ecomparison with those in other directions. Let the lift be cverywhere directed vertically, Under
these conditions, the downwash produced by the Iong@tud'mal vortices wust be uniform at all poinis
on the aergfoils in order that there may be a minimum of drag for a given total lift.

3. THREE DIMENSIONAL PARALLEL LIFTING ELEMENTS.

" The three-dimensional problem may be based upon the two-dimensional one. Lef now
the dimensions in the direction of flizht be considerable and let the lifting elements be dis-
tributed in space in any manner. Let y or » be the coordinates of any point in the direc-
tion of flight. For the time being, all lifting forces are assumed to be vertical.

The calculation of the density of drag for this case is somewhat more complicated than in
the preceding cases. Consideration must be given not only to the longitudinal vortices, which
are treated as before, but also to the transverse vortices which run perpendicular to the lift at
any point and to the direction of flight. Their intensity at any point where there is a lifting
olement is o

A 1
C=A7 o=l g 2000

The density of drag, W!now has two components, W, and W,, the first being due to the trans
verse vortices and the second to the longitudinal vortices.
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For the solution of the present problem only the total drag of sl lifting elements
W={ Wdx

is to be considered. In the first place it will be shown that the integral of those parts of the
density resulting from the transverse vortices

W,=[ Wy'de
does not contribute to the total drag. A small element of one transverse vortex of the length dx
at the point (z, ¥, z} produces at the point (&, », {) the downwash

do=go SV f oy, ede (16)
whera
=2+ g—yr+ -2
Therefore

W= Lrou fff (2, 9,2 f &m0 2 = Y dods. an

This integration is to be extended over all the agrofoils. It is possible to write this expression
in such & manner that it holds for & continuous-distribution of lift over parts of surfaces or in

space. This is true, moreover, for most of the expressiops in this paper. Now, exchanging the

variables z, ¥, 2, for £,'y, ¢, in equation {17) does not change the value of the integral, since the

‘symbols for the variables have no influence on the value of a definite integral. On the other
‘hand, the factor (3 —y), and therefore the integral also, changes its sign. Hence

W=~ W,=0 | (18)
W= W,. (19)

Therefore the entire drag may be caleulated without faking into consideration the transverse
vortices.

The method of calculatmg the effect of the longitudinal vortices can be greatly simplified.
At the point (£, %, {7 that part of the density of drag resulting from a longlt.uchnal vortex begin-
ning at the point (2, y, 2) is

and, as stated,

=?1%f JEn S @y, 2)-ydz SN0
where
ff =ad%ﬂ resp. g&f
and
"&=I1§ %’S ds; 1= E—2)'+ (g -8} + (&), @1
The entire drag is :
W= [Wiae=2 [ [16n 07 @ v, 2 vieds. 22

Now, in the double integral {22) the variables 2, ¥, z may be exchanged with &, 4, [, as before,
without affecting the value of the definite integral. Partial incegration may then be performed
twice, first with respect to ¢ and then with respect to &, The substitution results in

W=t | f f oy, @) (&, §) ddads (28)
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¥ is obtained from ¢ upon the exchange of variables. Its value is therefore

E=$f%$. ds;?’= =2+ (e—y)?+ G —2)% (24)

¥

‘'When partially integrating with respect to d¢, the integrable factorisf* (¢, 4, O

We-t( [Fen D E7 6y, 2 dade (25)

dx
W= '__fff (E: iy ;') f’ (x: # z) "’dﬁ’d’} (26)

Finally, by addition of (22) and (26), there is obtained

In the subsequent partial integration with respect to d, the integrable factor is Edé Y=—

2= fr@nns Gwo 40— de | @7)

§ =4+ —s may now be subsiituted in (24} for the variable of integration s. Then t changes to
¢, and with the exception of the sign the integrand in (21) agrees with the resulting one in (22)

= —E_f—ts*dg (28)

+ oo
| W—$=%_Jl$_7wds. (29)

Hence, y — and therefore the entire right side of equation (22} is seen to be independent of the
longltudms,l coordinates i of the lifting elements.

Therefore the entire resistance of a three-dimensional system of aerofoils wu}?z parallel lifting
elements does not depend wpon the longitudinal positions of the lifting elements.

4. LIFTING ELEMENTS ARRANGED IN ANY DIRECTIONS IN A TRANSVERSE PLANE.

The problem considered in section 2 can also be generalized in another way. For the present
the condition that ali lifting elements be in one transverse plane may remain, - However, they
need no longer be parallel, and the lift may be due to not only & great number of infinitesimal
lifis 44 but also to similar transverse forces dB. In the first place let the direction of all lifting
elements be arbitrary, but such that there is a minimum drag, and let this direction be an
unknown quantity to be determined.

In the present problem it is desirable to consider a continuous distribution of lift over given
areas instead of lines. The last case can be deduced from the first at any time by passing to
the limit.

Lot A’ =f(a, z) be the density of the vertical }ift per unit ares, and B’ = F(z, 2} the density
of the lateral force per unit area. The lateral force is considered positive when acting in the
positive d'irection of the X-axis. Then the density of the transverse vortices has the com-

ponents — A’ and —— B’ The density of the longitudinal vortex is the divergence of the

£ !
densxty of the transveratal vortex, or P (d4 ;)‘ The longitudinal vortices beginning
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at the point (2, z) therefore produce at the point (£,{) the downwash and the transverse velocity

1' dA’

dw= e (U - ) dee F - (3by
dw:%lv—Tp aa’_db )d i (309

According to the above, the density of the drag is
dW=A’ dxdz-}-B’ dxdz )

With these symbols there results for the total drag the expression

4,r,vzp”ffff’ 2 7 €0 257 dadededy f f f f F' (s2) F G0 S dvdededs + (30)

VIS J7 o Fen 5F dugeaas - J[J[F waren S i)

All of these integrals are to be taken over all of the lifting surfaces. Now the first two
mtegrals have forms corresponding to the integral in (8), and therefore there is a possibility of
substituting (12) for these. A similar relation also holds for the last two integrals. For exam-
ple, the variation of the third integral is

[ [ [ [1 @o P 2 dadadcis

fffﬂ:afr {,2) F(’;’;i’) +f’ (x,%) 6F(£,§') 2§ wdeddi (31)

Now in the first term on the right-hand side the variables « and # may be exchanged with #

and {. It may then be partially integrated with respect to dt, the integrable factor bemg dfi&o.
This gives

ffffsf’ {22y F (¢, i') r’g. dudadidt =~ — ffffaf (£,0)- df F (x,z} -2 dadedids (32

This may be partially integrated with respect to dz, the integrable factor being
| df—~z di-»
a2 dz 2
f”fa @A) F &) 5 atsdgis =~ [ [ [ (oren P ea SF wtstcay )

Hence the first term of the variation of the third integral of (30) ecan be transformed into the
second term of the variation of the fourth integral of this equation. In a similar manner the
two other terms may be transformed into each other. It is therefore demonstrated that the
variation of the entire drag may be written

SW=2ffsf-w. dadz+2[ {5 F-u-dudz (13b)
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- Two problems of variation can now be stated. In the first place limited parts of the surfaces

may be at our disposal, over which the vertical lift 4 and the horizontal transversal force B
may have any distribution, Only the total lift

A={[f (z,2) dedz=const. 9b)
will be given in this ecase.

Then

w=const. =w,; u=0 ) (15b)
18 the condition for the least drag.

If, however, the lifting parts are similar to lines, there is generally one other condmon o
fulfill. Itis then required that the lift disappear sverywhere along the direction of the aerofcils.
That is to say, _

fsinf—-Feos =0 ' (34)

where § is the angle of inclination of the aerofoil fo the horizontel X-axis. In order to add the
new requirement (34) a second Lagrange constant  is iniroduced. The condition for the least
drag is now

WA= =0 (34a)

,u
L)
cosﬁ =0 M gin

and after the elimination of u . _
a0 cos B+ u sin f=w, cos B (15¢)

the constant 2 X being replaced by —w,, as before. In words:

If all Lifting elements are in one transverse plane, the component of the velocity perpendicular
to the wings, produced by the longitudinal vortices, must be proportional, at all Lifting elements, to
the cosine of the angle of lateral inclination.

5. LIFT DISTRIRUTED AND DIRECTED IN ANY MAN'NER

The results obtained previously can be generalized not only for hftmg elements distributed
in & transverse plane but also for lifting elements distributed in any mapner in space. That
part of the total drag resulting from the transverse vortices is, in the general case

Vgl [ [ frevos@n o3t asspiniian
+ ffjfff Flo,y,2 FE 0 D2 - et dzdydzd;dnd_{-]

Both terms have the same form as the integral in (17). The demonstration for (17) therefore
applies to both. In the general case also the total drag can be caleulated from the longitudinal
vortices without taking into ¢onsideration the transverse vortices.

W=4:pv’|:ffjfffﬂz, v, 2 F (&, D) ¥, dedydedtdndy
+f f J f f fF,. (5,9, 2) F (& 0, 8) ¥, dodydedidods
_f f f ff J} (@, v, 2) F' (& n, ) ¥, dadydzdidnds (220)
_ffffffmz HAf &0 dxdydzdgdqd{:l

= 4%, g SEds b= (E—2) 4+ (- )P+ (F — 27

¥

{17a)

In this as in (20},

o=

1 {'i—2z
A Rt

o
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" The first two terms in (22a} have the same form. as the right-hand side of (22), and the same
conclusions are therefore valid for each. Tt can be proved directly for (22a) as for {22) that
each of the two double integrals is independent of the longitudinal coordinates of tha lifting
elements. This proof can now be extended over the last. two integrals of equation (22a).

The third integral, after changing the variables, becomes

JITILS @y @) B G, ) ¥, dadydedidnds = (35)
ISISASF &m0y 7 (3,9, 2) . dedudsdadyds

where

1
"o 7L

ds P=—a)+{s—p'+ -2

“"‘—38

Now, let F’ be chosen as the integrable factor and be partially integrated with respect to z.
SETIIS 2 Gowe2) B g0, ) vudedydedidnds = (36)
SITSISF &m0 @, v, ) & Fsinsdotyie.

As in the previous cases, the second integral to be expected vanishes since 7 as well as F

disappear at the limits 6f the integration. Next (—f—z ¥, = — g&” ¥,ischosen as the integrable factor
and partielly integrated with respect to 2. By ,, by analogy, is meant ‘
2= 4r _J g-_ﬁ_ ds
JfITIf7 G oy, 2) F &, 0 b dadydedidnde = (37

I &0 F y; 2) Vpdidndrdadyde.
Now ¢, may be transformed, the variable s in the defining equation being replaced by n+y—s.
~The result is that
Vomis | S ds, 2 -9 -2
¥

It is seen that the integrand agrees with that of the defining integral y,. Therefore, and since

the right-hand side of (37)’contains the same function under the double integral as the fourth

turn in (22a), this fourth term can be combined with the transformed third member. This
gives
TIfIf 5 @ w2 F (5,9, ) vdodydzdidedy + (38)

SIISISE Gy, 2) 7 6, 0 dududydodsindi =
SITE Gy, 2 8 &m0 W) dedydsdiands

where
+w

— ZE
—¥= 41r ds;

-

\,bz —¢, and therefore the two sides of (38) are 1ndependent of 4. Thas i3 therefore de:mon-
strated for the whole right-hand side of (22a).
2067—23——25
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In general it can therefore be said:

The total resistance is always independent of the longitudinal coordinates of the lifting elemenis.

And further:

The most favorable distribution of the lift, with reference {o the tolal drag, occurs when this 4s
also the case for the projection of the lifting elements on ¢ iransverse plane.

That is to say,all of the lifting elements are projected on a plane perpendicular to the
direction of flight, and any element so obtained has a lift equal to the sum of the lifts of all lifting
elements projected onto it.

6. DETERMINATION OF THE SOLUTIONS.

The previous demonstrations show that the investigation for the distribution of lift which
causes the least drag is reduced to the solution of the problem for systems of aerofoils which are
situated in a plane perpendicular to the direction of flight. In addition, the condition for least
drag (15¢}, which hecomes the condition of uniform dewnwash (15) if the lift is vertical, leads
to a problem which has often been investigated in the theory of two-dimensional flow with a
logarithmic potential. The flow produced within the lifting transverse plane by the longitudinal
vortices originating in it is, indeed, of this type. Bach such vortex produces a distribution of
velocity such as is produced by a two-dimensional vortex of half its intensity, and the whole
distribution of velocity is obtained by adding the distributions produced by the longitudinal
vortices, The potential Sow sought is determined by the condition of (15¢). Let it be com-
bined with the flow of constant vertical upward motion w= —w, The resulting flow satisfies
the condition at the boundaries

weos B+upin =0 89)

and there results, for the case of lifting lines:

The two dimensional potential flow is of the fype that encircles the lifting lines, and at a great
distonce the velocity is directed upwards and has the value w= —w,. - _

Within lifting-surfaces the velocity is zero according to the condition (15b), and the fluid -
therefore flows around the contour.

The mtensity of the longitudinal vortices at any point is twice the rotation of the two
dimensional flow. In the casc of the lifling lines, thorefore, the density of the longitudinal
vortices is double the discontinuity of velocity from one side to the other. The intensity of the
transversal vortices iz determined by infegrating the longitudinal vorticés along the aerofoils
and therefore equals pwice the difference of the velocity-integral produced on the two sides of

‘the serofoil. Now the integral of the velocity produced is identical with the potential and

hence it appears:
The density of the Uift perpendicular to the lifting line 1s proportional to ﬂw digcontinuity of
polential ¢,— oy, and has the value

'\/W =2v0{e,— ¢y (40)

Hence the total lift obtained by integrating over all aerofoils is

A=2y,p0 _f (02— )2 (41)

Sometimes a transformation of this equation is useful. In order to obtain if, suppose that .
all of the lifting lines are divided into small parts. Then, on the two ends of each lifting element.
there begin two in7etss iongitudinal vortices, the effect of which on a distant point is that of &
double vortex. Their velocity-potential ¢ and their stream function ¢ may be combined in the
compex function ¥ +ig, and, not considering the existence of a parallel flow, which is without
any importance in the caleulation, this complex function has the form for a lifting line,

d4+4dB

A ig) = T “2)
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whare 2 represents z + ¢y and 2z, =2,+ iy, 2, and ¥, being the coordinates of the lifting elements of
thie line. For 2 lift, distributed over areas a similar equation can be formed. The integration of
{42) gives

pip= [IALIE (420)

Now the residuum of the integrand at infinity is dA +4@8 and therefore the residuum of the

integral is A+iB. Therefore the expression can be written.
A =2upR [Res(§ +-ig)] (41a)

where the last part means the real part of the residuum of ¢ +-ip st infinity. In the most im-
portant case of horizontal aerofoils the residuum itself is real and can be used directly to caleu-
late the lift. "The density of drag at any point is proportional to the perpendical component of

the density of lift and is W’s%‘-d’, from which results Ws%“- A, Making use of (41) one chtains -
L] L[]

— 3_.1__ ___1_._._.
"= ==Y 43)
W0y :
We At o (438)
2v,%0 R [Res W +ip)]

The integral in the denominator of (43} represents an area characteristic of the system of
aerofoils investigated. Trequently the easiest method of caleulation is t0 assume from the
beginning the velocity w, at infinity to be umity.

The case of the lift continuously distributed over single parts of dreas is derived frem. the
preceding one by passing to the limit. Since the vertical velocity w disappears at all points in
the lifting surfaces, the velocity is zero at all polnts and the rotation vanishes.

Therefore, in the cuse of the most favorable distribution of lift, all of the longitudinal vortices
Jfrom the continuously lifting areas begin of the boundaries of the areas.

Equations (43) and (43a) remain. The distribution of lift is indeterminate to a certain
extent. On the other hand, it is possible to connect the points of the contour having the same
potential ¢ by strips of any form, and it is -only necessary that the lift be always perpendicular
to the sirip and its densi{y have a constant value along the whole sfrip. According to equation
{40) this equals the difference of the potential at the contour between the two horders of the
strip. Worthy of note is the special case in which all of the strips run slong the contour, thus
coming again to the case of lifting lines, It appears that:

Closed lines have the same mimimum of drag as the enclosed areas when continuously loaded,

Especially important are those symmetrical contours which are cut by horizontal lines in
only two points. With such the limitation to vertical lift does not involve an increase of the
minimum drag. For this case it appears that:

The density of the vertical Lift per unit area must be proporiional to the vertical component of
the veloeity of the two-dimensional flow at the point of the eontour of the same herght 2. It 18

44

&_F= 29,,,0 %i; (44)
The corresponding density of drag is

ﬂr = Qw5 ‘3"’ (45)
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7. EXAMPLES OF CALCULATIONS,

Examples of caleulation of the previous demonstrations can be based on any caleulated
two-dimensional potential flow around parts of lines or areas. The simplest flow of the first
kind is that sround & single horizontal line. It leads to the problem investigated at the begin-
ning of this paper.

In this case the potential is the real part of /p—1, where p denotes z +¢z. The lifting
line joins the two points 2=0,2=—1 and 2=0, 2=+, a,nd has the length 2. The velocity at
infinity is w=1. The discontinuity of potential along the lifting “line is ¢,— p=241—2%. The
density of lift is distributed according to the same law, therefore if plotted over the span the
density of lift would be represented by the half of an ellipse.

The minimum drag is
1 1

= 2 —_—
W=4 vlpfy 4w

(46)

If, instead of the value 2, the span had the general value b, the minimum drag would be

1 1

W=.A42 » W;b_z (47)

This same result has been obtained by Prof. Prandtl by another method.?
The simplest example for a lifting vertical area is the circle. Let its center coincide w1t.h
the origin of the system of coordinates. Then the potential of the flow around this circle is

=%tz (48)

where 7=+/2* +-z°. At infinity Wy=1. Under the condition of and according to equation (40)
the density of lift is

d/z
A = 21.?09 de (?.2 +2)r-1 (49)
This results in a constant density of 1ift of 4*=2, Therefore the drag is

1

1. I
L T ff%xdzquvo"m’z'&r (50)

The double integral is to be taken over the eircle. If the general case for the diameter
equsl to D be considered, then the least drag is

1 1
W=2 - S0 - piss (51)

Hence in respect to the minimum drag the circle is equivalent to a lifting line having
a length +/2 times the diameter. :

A lifting circular line would have the same minimum drag as the circular area.

This result was also obtained by Prof. Prandtl by another method.4 A reduction of the
original problem of variation to the two-dimensional flow sometimes enables a survey of the
result to be made without caleulation. ~ For instance, let & third aercfoil be added between the
two aerofoils of a biplane having a small gap. (The gap may be about one-sixth of the
span.) Then, in order to find the most favorable distribution of lift, the double line ahout
which the flow oceurs is to be replaced by three llftlng lines. Now,in t.he region of the middle
lifting line the velocity is small, even before this line is introduced. Therefore the discontinuity
of the potential along the middle line is very much smaller than that along the others. Hence
it results that the middle aerofoil of a triplane should lift less than the other two.

# Fi:st commuonication eencerning ¢ itin Zeitgchrics [ir Fiugtechrik und Motorl, 1914, 8. 239, in a note by Beta.
¢ See Technigehe Beriehta der Flugzeugmadsterei Ba, 1T Helt 3,
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s, PROCEDURE FOR THE CASE OF FLUIDS WITH SMALL VISCOSITY.

"The preceding results do not apply so much to the calculation of the most favorsble distribu-
tion of lift as to the calculation of the least drag. For it appears, and the results are checked
by calculation, that even considerable variations from the condition of miost favorable distribu-
tion of lift do not increase the drag to any great extent. Usually the minimum drag can be
considered as the real drag of the system of aerofoils and in order to allow for the effect of
friction of the air it iz sufficient to make an addition. This addition depends chiefly upon the
aerofoil section; it also depends, omitting the Reynolds Number, only upon the area of the
wings and on the dynamical pressure. Lt is independent of the dimensions of the system of
wings themselves. Tt may be useful to have a name for that part of the density of drag, inde-
pendent of the friction of the air, which results from the theory developed in this paper. It is
called the “induced drag.” Generally it is not the drag itself but an absolute coefficient which
is considered, This coefficient is defined by :

¢wi=g_ﬂp (62)
where W, is the drag previously denoted by W, ¢ is the dynamical pressure v,2.0/2, and #is
the total area of the wings. LEquation (43) can now be written

cgt I

=53 : (63) .

c“"=w(?c*bﬁ

where ¢, is the lift coeflicient FAE corresponding to ¢y, The greatest horizontal span b of the

system of wings perpendicular to the dircetion of flight is arbitrarily chosen as a length char-
acteristic of the proportions of the system, % is a factor characteristic of the system of aero-
foils and has, according to the preceding, the value.

= é . '?ﬂd\t
k ‘\/r "5 w, (54)
It has a special physieal significance.

Under the same conditions @ single aerofoil with a spen of k times the mazimum spen of @
system of aerofoils has the same induced mintmum resistance s the sysfem.

9. REFINEMENT OF THE THEORY.

The demonstrations given rest on the assumption that the velocities produced by the
_ vortices are small in comparison with the velocity of flight. The next assumption, more ac-
curate, would be that only powers higher than the first power could be neglected.

In this case the solutions just found for lifting elements in & transverse plane can be con-
sidered as the first step towards the calculation of more exact solutions. The following steps
must be taken: The exact density of dragis W'=4' v—ijr_v where v is the horizontal veloeity

L]
produced at the lifting elements by the transverse vortices. It can be caleulated exactly
enough from the first approximation. Now, the eondition of least drag is

w08 B+ p sin B=w, cos (l +§) {15d4)
0.

and the flow of potential, aceording to this condition at the boundary, is to be found. Compared
with the first approximation the density below is in general somewhat inereased and the den-
sity above is somewhat decreased. The minimum drag changes only by quantities of the
second order.
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It the lifting elements are distributed in three dimensions a similar refinement can easily
be found. In this case there is to be taken into consideration a second factor which always
comes in if the differences of the longitudinal coordinates of the lifting elements are consider-
able. The direction of the longitudinal vortices do not agree exactly with the direction of
flight, but they coincide with the direction of the velocity of the fluid around the aerofoil.
They are therefore somewhat inclined downwards. A better approximation is obtained by
projecting the lifting elements not in the dircction of flight but in & direction slightly inelined

upwards from the rear to the front. This inclination is about Q?w‘-'- . Except for this, the method
o

of calculation remains unchanged.
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THE AERODYNAMIC FORCES ON AIRSHIP HULLS.

B:.r_ Maxz M. MuNE,

SUMMARY

This report describes the new. method for making computations in connection with the
study of rigid airships, which was used in the investigation of Navy's ZR—1 by the special
subcommittee of the National Advisory Committes for Aeronautics appointed for this purpose.
It presents the general theory of the air forees on airship hulls of the {ype mentioned, and an
attempt has been made to develop the results from the very fundamentals of mechanics, with-
out reference to some of the modern highly developed conceptions, which may not yet be
thoroughly known to a reader uninitiated into modern aerodynamics, and which may perhaps
for all times remain restricted to a small number of specialists.

I. GENERAL PROPERTIEZ OF AERODYNAMIC FLOWS,

The student of the motion of solids- in air will find advantage in first negleeting the
viscosity and compressibility of the latter. The influence of thess two properties of air are
better studied after the student has become thoroughly familiar with the simplified problem.
The resvlts are then to be corrected and modified; but in most cases they remain substantially
valid.

Accordingly I begin with the discussion of the general properties of aerodynamic flows
produced by the motion of one or more solid bodies within a perfect fluid otherwise at rest,
In order to be able to apply the general laws of mechanies to fluid motion I suppose the air to
be divided into particles so small that the differences of velocity at different points of one par-
ticle can be negleoted. This is always possible, as sudden changes of velocity do not oecur
in actual flows nor in the kind of flows dealt with at present. The term ‘‘flow” denotes the
entire distribution of velocity in each case. .

With aerodynamic flows external volume forces (that is, forces uniformly distributed over
the volume) do not occur. The only force of this character which could be supposed to infla-
ence the flow is gravity. It is neutralized by the decrease of pressure with increasing altitude,
and both gravity and pressure decresse can be omitted without injury to the result. This

does not refer to acrostatic forces-such as the buoyaney of an airship, but the serostatic forees

are not o subjeet of this paper.

The only foree acting on a partiele is therefore the resultant of the forces exerted by the
‘adjacent particles, As the fluid is supposed to be nonviscous, it can not transfer tensions
or forces other than at right angles to the surface through which the transfer takes place, The
consideration of the equilibrium of & small tetrahedron shows, then, that the only kind of tension
possible in & perfect fluld is a pressure of equal magnitude in all directions at the point considered.

In general this pressure is a steady function of the time ¢ and of the three coordinates of
the space, say %, ¥, and z, at right angles to each other. Consider now a very small cube with
the edges dz, dy, and dz. The mean pressure acting on the face dy dz may be p. The mesn
pressure on the opposite face is then p +0p/dzde. The X-compenent of the resultant volume
force is the difference of these two mean pressures, multiplied by the area of the faces dydz,
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hence, it is —g’*—’;dx dy dz. Per unit volume it is —gg, as the volume of the cube is dz, dy, d=.

It can be shown in the same way that the other two components of the force per unit volume
am—gg and — %g Such a relation as existing between the pressure distribution and the force

produeced by it is generally deseribed as the force being the “‘gradient” of the pressure, or
rather the negative gradient. Any steady distribution of pressure has a gradient at each point,
but if a distribution of forces (or of other vectors) is given, it is not always possible to assign
a quantity such that the forces are its gradient,

We denote the density of air by p; that is, the mass per unit volume, assumed to be con-
stant, dr may denote the small volume of a particle of air. 'The mass of this particle is then
pdr. The components of the velocity V of this particle parallel to #, i, and 2 may be denoted

by u, », and w., Each particle has then the kinetic energy d7= %dr(u"-}-oﬂ-}-wﬂj and the

component of momentum, say in the X direction, is pdru. The kinetic ehergy of the entire
flow is the integral of that of all particles.

T=§f(u’+v’+w’)dr-.--.-__..-.--.-h_-__-.-. D
Similarly, the component of momentum in the X-direction is the integral

pfuda- SR ¢3!

and two similar equations give the components for the two other directions. These integrals
will later be transformed to make them fit for actual computation of the energy and the
momentum.

1t ie sometimes useful to consider very large forces, pressures, or volume forees acting
during a time element d¢ so that their product by this time element becomaes finite. Such
actions are called “impulsive.” Multiplied by the time element they are called impulses, or
density of impulse per unit area or unit volume as the case may be.

After these general definitions and explanations, I proceed to establish the equations
which govern an aeredynamic flow. Due o the assumed constant density, we have the well-
known equation of continuiby

5 Yoyt 5% o )

Wae turn now to the fact that for aerodynamic problems the flow can be assumed to be
preduced by the motion of bodies in air originally at rest. As explained above, the only force
per unit volume acting on each particle is the gradient of the pressure. Now, this gradient
can only be formed and expressed if the pressure is given as a function of the space coordinates
z, v, and z. The laws of mechanics, on the other hand, deal with one particular particle, and
this dees not stand still but changes its space eoordinates continually. In order to avoid
difficulties arising therefrom, it is convenient first to consider the flow during a wery short
time interval d¢ only, during which the changes of the space coordinates of the particles ean be
neglected as all velocities are finite. The forces and pressures, however, are supposed to be
impulsive, so that during the short interval finite changes of velocity take place. Suppose
first the fluid and the bodies immersed therein to be at rest. During the creation of the flow
the density of impulse per unit area may be P, i. e, P=fpdt. The principles of mechanics
give then

oP

up= — -
¢ P
T&—bx('—;
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and similarly in the two other dirsetions
Y O
YToON s

Hence the velocity thus created is the gradient of (*1;)- At this state of investigation the

value of %Jis not yet known. But the important result is that the flow thus created is of the

type having a distribution of velocity which is a gradient of some quantity, called the velocity
potential &. ¢ is the impulse density which would stop the flow, divided by the dansity p.

According to (4)
- O - (5)
oz’ oy dz

from whieh follows

b= fludz +ody +wdz) ... (6
A second differentiation of (5) gives
e ov
a—y—_-&, ] R 4 3
sinee both ars equal to a_z_zad; - Tha substitution of (5) into the squation of continuity (3} gives
o' O b
w+w+b?=o‘_---...__.-----.___-.-----._-(8)

(Laplace’s equation}, which is the desired equation for the potential . The sum of any
solutions of (8) is a solution of (8) again, a¢ can easily be seen. This is equivalent to the super-
position of flows; the sum of the potential, of the impulsive prassures, or of the velocity com-
ponents of severa) potential flows give a potential flow again.

All this refers originally to the case only that the flow is created by one impulsive pressure
from rest, But every continuous and changing pressure can be replaced by infinitely many
small impulsive pressures, and the resultant flow is the superposition of the flows created by
each impulsive pressure. And as the superposition of potential flows gives a potential flow
again, it is thus demonstrated that all aerodynamic flows are potential flows.

It can further be shown that for each motion of the bodies immersed in the fluid, there
exists only one potential flow. For the integral (6) applied to a stream line (that is, a line
always parallel to the velocity) has always the same sign of the integrant, and hence can not
become zero. Hence a stream line can not be closed, as otherwise the integral (6} would give
two different potentials for the same point, or different impulsive pressures, which is not pos-
sible.  On the contrary, cach stream line begins and ends at the surface of one of the immersed
bodies. Now suppose that two potential flows exist for one motion of the bodies. Then
reverse one of them by changing the sign of the potential and superpose it on the other. The
resulting flow is characterized by all bodies being at rest. But then no stream line can begin
at their surface, and hence the flow has no stream lines at all and the two original flows are
demonstrated to be identical.

It remains to compute the pressure at each point of a potential flew. The aceeleration
of each particle is equal to the negative gradient of the pressure, divided by the density of
the fluid. The pressure is therefore to be expressed as a function of the space coordinates,

and 50 is the acceleration of a particle, Each component of the acceleration, say i—?: has to

be expressed by the local rate of change of the velocity component at a certain point %?’ and
23—24—30
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by the velocity components and their local derivatives themselves. This is done by the equa-
tion
du_On ,  Ou, 0u_ Ou

a_t=b‘t"".uaﬁ"va—y'l'w"a'z'------..---——------,-..---‘.--(9)

For during the unit of time the particle changes its coordinates by u, ¥, and w, respectively,

and therefore reaches a region where the velecity is larger by u%E: etc. This increase of

velocity has to be added to the rate of change per unit time of the velocity at one particular
point.

The general principles of mochanies, applied fo a partiele nf unit volume, give therefore

di Ou ou du S Ibp .
Ao Yo Ve e Tpor e s (0

Substituting equation (7) in the last equation, we have

Qu du, w, w19
ST o PV T s T TRy ceeee -2 {11
Tntegrating this with respect to dx gives
$ 1
p%£4-£('r£’-l--v’+w‘)m—-;p------_-----.--...----_.-_(12)

The equations for the two other components of the acceleration would give the same equation.
Hence it appears that the pressure can be divided into two parts superposed. The first part,

-—p%%, is the part of the pressure building up or changing the potential flow. Tt is zero if the
flow is steady; that is, if

The second pfm&I
V()

if the pressure necessary to maintain and keep up the steady potential flow. It depends only
on the velocity and density of the fluid. The greater the velocity, the smaller the pressare.
Tt is sometimes called Bernouilli's pressure. This pressure acts permanently without changing
the flow, and hence without changing its kinetic energy. It follows therefore that the Ber-
nouilli’s pressure {14) acting on the surface of a moving body, can not perform or consume
any mechanical work. Hence in the case of the straight motion of a body the compenent of
resultant force parallel to the motion is zero.

Some important formulas follow from the ereation of the How by the impulsive pressure
—&p, I will assume one body only, though thig is not absolutely necessary for a part of the
results. The distribution of this impulsive pressure over the surface of the bodies or body is
characterized by a resultant impulsive force and a resultant impulsive moment. As further
characteristic there is the mechanical work performed by the impulsive pressure during the
creation of the flow, absorbed by the air and contained afterwards in the flow as kinetic energy
of all particles. :

It happens sometimes that the momentum imparted to the flow around s body moving
tvanslatory is parallel to the motion of the boedy. Sinee this momentum is proportionsl to the
velocity, the effect of the air on the motion of the body in this direction is then taken care of by
imparting to the body an apparent additional mass. If the velocity is not accelerated, no force
1s necessary to maintain the motion. The bedy experiences no drag, which is plausible, as no
dissipation of energy Is assumed. A similar thing may happen with a rotating body, where
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then the body seems to possess an apparent additional moment of momentum. In general,
however, the momentum imparted to the fluid is not parallel to the motion of the body, but it
possesses a lateral component. The body in general possesses different apparent masses with
respect to motions in different directions, and that makes the machanics of a bedy surrounded
by a perfect fluid different from that of one moving in a vacuum.”

The kinetic energy imparted to the air is in & simple relation to the momentum and the

velocity of the body., During the generation of the flow the body has the average velocity ;

during the time d2, hence it moves through the distance gdt. The work performed is equsl
to the product of the component of resultant force of the creating pressure in the direction of

motion, multiplied by this path, hence it is equal to half the product of the velocity and the

component of the impulsive force in its direction.

The same argument can be used for the impulsive pressure acting over t.he surface of the
body. Let dn be o linear element at right sngles to the surface of the body drawn outward.
The velocity at right angles to the surface is then, — d®/dn and the pressure — ;% acts through

d@f&n

the distance— dt. The work performed all over the surface is therefore

L
T=f; TN ¢

which integral is to be extended over the entire surface of the body consisting of all the elements
dS8. 'The expression under the mtegral contains the iass of the element of fluid displaced
by the surface element of the body per unit of time, each element of mass multiplied by the
velocity potential. The Bernouilli ‘pressure does not perform any work, as discussed above,
and is therefore omitted.

The apparent mass of a body moving in a partienlsr direction depends on the density of the
fiuid., It is more eonvenient therefore to consider a volume of the fluid having a mass equal
to the apparent mass of the body. This volume is

Koo 2 (16)
&>

and depends only on the dimensions and form of the body.

The kinetic energy of the flow relative to & moving body in an infinite fluid is of course
infinite. It is possible, however, to consider the diminytion of the kinetic energy of the air
moving with constant velocity brought about by the presence of a body at rest.  This diminu-
tion of energy has two causes. The body displaces fluid, and hence the entire energy of the
Buid is lessened by the kinetic energy of the displaced fluid. Further, the velocity of the air
in the neighborhood of the body is diminished on the average. The forces hetween the body
and the fluid are the same in both cases, whether the air or the body moves. Hence this second
diminution of kinetic energy is equal to the kinetic energy of the flow produced by the moving
body in the fluid otherwise at rest.

IL. THE AERODYNAMIC FORCES ON AIRSHIF HULLS.

An importent branch of theoretical aerodynamics deals with moments on bodies mov-
ing through the air while producing a potential fiow. Wings produce a flow different from a
potential flow, in the strict meaning of the word. The wings have therefore to be exeluded
from the following discussion.

Consider first bodies moving straight and with constant velocity ¥ through air extending
in all directions to infinity. There can not then be a drag, as the kinetic energy of the flow
remains constant and no dissipation of energy is suppesed to take place. Nor can there be a

115



116

REPORT NWATIONAL ADVISORY COMMITTEE FOR ARRONAUTICS.

{ift in conformity with the remarks just made. Hence the air pressures can at best produce
& resultant pure couple of forces or resultant moment. The magnitude and direction of this
moment will depend on the magnitude of t':e velocity V and on the position of the body rela-
tive to the direction of its motion. With a change of velocity all pressures measured from a
suitable standard, change proportional to the square of the velocity, as follows from equation
{14). Hence the resultant moment, ig likewise proportional to the square of the velocity. In
addition it will depend on the position of the body relative to the direction of motion. The
study of this latter relation is the chief subject of this section. At each different position of
the body relative (o the motion the flow produced is different in general and so is the momentum
of the flow, possessing different components in the direction of and at right angles to the direc-
tion of motion. By no means, however, can the relation between the momentum snd the
direction of motion bhe quite arbitrarly prescribed. The flow due to the straight motion in
any direction can be obtained by the superposition of three flows produced by the motions in
three particular directions. That restricts the possibilities considerably. But that iz not all,
the moments can not even arbitrarily be preseribed in three directions. I shall presently
show that there are additional restrictions based on the principle of conservation of energy
and momentum,

Let there be a component of the momentum lateral to the motion, equal to K, Vp, where
p denotes the density of the air. Since the body is advancing, this latersl component of the
momentum has eontinually to be annihilated at its momentary position and to be created anew
in its next position, occupied a moment later. This process requires a resultant moment

M E Voo e (AT

about an axis at right angles to the direction of motion and to the mementum. In other words,
the lateral component of the momentum multiplied by the velocity gives directly the resultant
moment. Conversely, if the body experiences no resultant moment and hence is in equilibrinm,
the momentum of the air flow must be parallel to the motion.

Now consider a flow relative to the body with constant velocity V except for the disturb-
ance of the body and let us examine its (diminution of) kinetic energy. If the body changes
its position very slowly, so that the flow can still be considered as steady, the resultant moment
is not affected by the rotation but is the same as corresponding to the momentary position and
stationary flow. This moment then performs or absorbs work during the slow rotation. It
either tends to accelerate the rotation, so that the body has to be braked, or it is necessary to
exert a moment on the body in order to overcome the resultant moment. This work performed
or absorbed makes up for the change of the kinetic energy of the flow. That gives a fundamental
relation between the energy and the resultant moment.

There are as many different positions of the body relative to its motion as a sphere has
radii. The kinetic energy of the flow is in general different for all directions, the velocity ¥
and density p supposed to be constant. ‘It has the same value, however, if the motion of the
immersed solid is reversed, for then the entire flow is reversed. Therefore sach pair of direc-
tions differing by 180° has the same kinetic energy. This energy moreover is always positive
and finite, There must therefore be at least one pair of directions, where 1t is & minimum and
one where it is a maximum. Moving parallel to either of theses dlrectwns the body is in equilib-
rium and experiences no resultant moment. This follows from the consideration that them a
smill change in the direction of motion does not give rise to a corresponding change of the
kinetic energy; the moment does not perform any work, and hence must be zero. The equilibrium
isstable if the diminution of energy of the entire flow is a maximum and unstable if it is a minj-
mum. It can be proved that in addition there must be at least one other axis of equilibrium,
This is the position “neutral” with respect to the stable direction and at the same time neutral
with respect to the unstable one. 1 ¢all these directions “main axes.’

I proceed to demonstrate that the three main axes of equilibrium are always at nght angles
to each other. Consider first the motion parallel to a plane through one of the main axes and
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only the components of the moementum parallel to this plane. The direction of motion of the
body may be indicated by the angle « in such a way that «=0 is one motion of equilibrium, and
hence without lateral component of momentum. The component of momentum in the direc-
tion of the motion may then (that is, when a=0) be K,pV. When moving at the
angle of a=90°, the momentum may be supposed to possess the components H,pV paraliel
and eV at Iight angles to the motion; and we shall prove at once that the only momentum
is the former. :
The kinetic energy for any direction « can be writéen In the general form

Te 'Vzg (K, cos?* a+ K, sin® a+ K, c0os « Sin o)

and hence the resultant moment is

M= dT/da= Vzg[(}f,-}r,) sin 2 a+ K, cos Za] .8

This resultant moment was supposed to be zero at a=0. Hence K,=0, and it follows thas
o= 90° is a position of equilibrium for motions in the plane considered. As for other motions,
it is to be noticed that the third component of the momentum, at right angles to the plane,
changes if the plane rotates around the axis of oquilibrium. It necessarily changes its sign
during a revolution, and while doing it 3f is zero. Thus it is demonstrated that there are at
least two axes at right angles to each other where all lateral components of the momentum are
zero, and hence the motion is in equilibrium. And ag this argument holds true for any pair of the
three axes of equilibrium, it is proved that there are always at least three axes of equilibrium
at right angles to each other.

Resolving the velocity ¥ of the body into three components, w, v, w, parallel to these three
main axes, the kinetic energy can be expressed

§ (Kot + B+ Eg?)

The differential of the energy
o (M + Kpdv+ Kaedw)

is identically zero in more than three pairs of positions only if at least two of the K’s are equal.
Then it is zero in an infinite number of directions, and there are an infinite number of directions
of equilibrium.. The body is in equilibrium in all directions of motion only if all three K’'s are
equal; thatis, if the apparent mass of the body is the same in all directions. That is a special
case.

Tn all other cases the body experiences a regultant moment if moving with the veloeity com-
ponents u, v, and w parallel to the three main axes. The component of this resultant moment
is determined by the momentary lateral momentum and its components, as stated in equation
17.

In most practical problems the motion occurs in a main plane; that is, at right angles to a-

main axis, Then the entire resultant moment is according to (17) the product of the velocity
and the component of momentum at right angles to it, giving

M= V’%(E;—Kl) S R § | )

In general, the three main momenta of the flow, parallel to the respective motion, do not
pass through one center. Practical problems occur chiefly with bodies of revolution. With them
aswell aswithbodies with a center of symmetry—that is, such as have three planes of symmetry—
the relation between the motion and the momenta is simple. It follows then from symmetry
that the body possesses an aerodynamic center through which the three main momenta pass.
This mesans that the body can be put into any straiglit motion by applying a force at a fixed
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center. The force, however, iz not parallel to the motion except in the main directions. The
center where the force has to be applied coincides with the aerodynamic center, if the center of
gravity of the body does so or if the mass of the body itself can be neglected compared with
any of the three main additional masses.

Airship hulls are often bounded by surfaces of revolution. In addition they arc usually
rather elongated, and if the cross sections are not exactly round, they are at least approximately
of equal and symmetrical shape and arranged along a straight axis. Surfaces of revolution
have, of course, equal transverse apparent masses; each transverse axis at right angles to the
axis of revolution is a main direction. For very elongated surfaces of revolution a further
important statement may be made regarding the magnitude of the longitudinal and transverse
gpparent mass. When moving transversely the flow is approximately two-dimensional along
the greatest part of the length. The apparent additional mass of & circular cylinder moving at
right angles to its axis will be shown to be equal to the mass of the displaced fluid. It follows
therefore that the apparent transverse additional mass of a very elongated body of revolution
is approximately equal to the mass of the displaced fluid. It is slightly smaller, as near the
ends the fluid has opportunity to pass the bow and stern. For cross sections other than eircular
the two main apparent masses follow in a similar way from the apparent mass of the cross
section in the two-dimensional flow.

The longitudinal apparent additional mass, on the other hand,issmall whencompared with
the mass of the displaced fleid. It can be neglected if the hody is very elongated or can at
least be rated as a small correction. This follows from the fact that only near the bow and the .
stern does the air have velocities of the same order of magnitude as the velocity of motion.
Along the ship the velocity not only is much smaller but its direction is essentially opposite to
the direction of motion, for the bow is continually displacing fluid and the stern makes room
free for the reception of the same quantity of fluid. Henes the fluid is flowing from the bow to
the stern, and as only a comparatively small volume is displaced per unit of time and the space
is free in all directions to distribute the flow, the average velocity will be small,

It is posstble to study this flow more closely and to prove analytically that the ratio of the
apparent mass to the displaced mass approaches zero with increasing elongation.  This proof,
however, requires the study or knowledge of quite & number of conceptions and theorems,and
it seems hardly worth while to have the student go through all this in order to prove such a
plausible and trivial fact.

The actual magnitudes of the longitudinal and transverse masses of elongated surfaces of
revolution can be studied by means of exact computations made by H. Lamb (reference 5),
with ellipsoids of revolutions of different ratio of elongation. The figures of &, and &, where
FK=%x volume, obtained by him are contained in Table I of this paper, and &, —k, i3 computed.
For bodies of a shape reasonably similar to ellipsoids it can be approximately assumed that
{k,—%,) has the same value as for an ellipsoid of the same length and volume; that is, i Vol/I*
has the same value.

The next problem of interest is the resultant acrodynamic force if the body rotates with
constant velocity around an axis outside of itself. That is now comparatively simple, as the
results of the last section can.be used. The configuration of flow follows the body, with constant
shape, magnitude, and hence with constant kinetic energy. The resultant serodynamic force,
therefore, must be such as neither to consume nor to perform mechanical work. This leads
to the conclusion that the resultant force must pass through the axis of rotation. In general
it has both a component at right angles and one parallel to the motion of the center of the body. .

I confine the investigation to a swrface of revolution. Let an airship with the apparent
masses R,p and H,p and the apparent moment of inertia X'p for rotation about a transverse
axis through its aerodynamic center move with the velocity V of its aerodynamic center around
an axie at the distance » from its aerodynamic center and let the ahgle of yaw ¢ be measured
between the axis of the ship and the tangent of the circular path at the aerodynamic center.
The ship is then rotating with the constant angular velocity V/r. The entire motion can be
obtained by superposition of the longitudinal motion V cos ¢ of the aerodynamic center, the
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tranverse velocity Vsin ¢, and the angular velocity 7/r. The longitudinal component of the
momentum is Vp. cos ¢. k,. vol, and the tranverse component of the momentum is Vp sin ¢.
k;. vol, Besides, there is a moment of momentum due to the rotation. This can be expressed
by introducing the apparent moment of inertia K’'p=2%'Jo where J is the moment of inertia of
the displaced air; thus making the angular momentum

k'Tp ( E)

As it does not change, it does not give rise to any resultant aerodynamie force or moment during
- the motion under consideration.
The momentum remains constant, tao, but changes its direction with the angular velocity
Vir. This requires a foree passing through the center of turn and having the tranverse com-
ponent
Fi=KpeosdVir o il e 200
and the longitudinal component

Fr= KpsingV3r_ . e 21

. The first tern is almost some kind of centrifugal force. Some air accompanies the ship, inereas-
ing its longitudinal mass and hence its centrifugal force. It will be noticed that with actual
airships this additional centrifugal foree is small, as %, is small. The force attacking at the
center of the turn can be replaced by the same foree attacking at the aerodynamic center and
a mement avound this cenber of the magnitude. :

Afss b(B,— BDp il 8602 . (22)

“This moment is equal in direction and niagnitude to the unstable moment found during straight
motion under the same sngle of pitch or yaw. The longitudinal force is in practice a negative
drag ns the bow of the ship is turned toward the inside of the cirele. It is of no great praetical
importance as it does not produce considerable structural stresses.

It appears thus that the ship when flying in a curve or circle experiences ulmost the same
resultant moment as when flying straight and under the same angle of pitch or yaw. I proceed to
show, lowever, that the transverse aerodynamic forces producing this resultant moment are
distributed differently along the axis of the ship in the two cases.

The distribution of the transverse aerodynamic forces along the axis cun conveniently
he computed for very elongated airships. It may be supposed that the cross seetion is cireular,
wlthough it ie easy to generalize the proceeding for a more general shape of the cross section.

The following investigation requires the knowledge of the apparent additional mass of a
cireular cylinder moving in a two-dimensional flow. I proceed to show that this apparent
additional mass is exactly equal to the mass of the fluid displaced by the cylinder. In the
two-dimensional flow the cylinder is represented by a circle.

Let the center of this circle eoincide with the origin of a system of polar egordinates B and
¢, moving with it, and let the radius of the eircle be denoted by ». Then the velocity poten-
tinl of the flow created by this eirele moving in the direction ¢=0 with the velocity » is
& =vr (cos ¢) /K. Tor this potential gives the radial veloecity components

did r?
t_i_-R= ——-Q}Rz CO8 ¢

and at the cireumference of the cirele this velocity becomes » cos ¢.  This is in fact the normal
component of velocity of a circle moving with the velocity » in the specified direction.

The kinetic energy of this flow is now to be determined. In analogy to squation (15),
this is done by integrating along the circumference of the circle the product of {a) the elements

of haf the mass of the fluid penetrating the circle (% o8 qurdrﬁ) and (3}, the value of the veloc-

119



120

REPORT NATIONAL, ADVISORY COMMITTEE FOR ARRONAUTION.

ity potential at that point (—» cos ¢.#). The integral is therefore
% f " cos® grirde
L
giving the kinetic energy r’"m:’%o

This shows that in fact the area of apparent mass is equal to the area of the eircle.

I am now enabled to return to the airship.

It a very elongated airship is in translatory horizontal motion through air otherwise at rest
and is slightly pitched, the component of the motion of the air in the direction of the axis of the
ship can be neglected. The air gives way to the passing ship by flowing around the axis of the
ship, not by flowing along it. The air located in a vertical plane at right angles to the motion
remains in that plane, so that the motion in each plane can be considered to-be two-dimensional.
Consider one such approximately vertical layer of air at right angles to the axis while the ship
is passing horizontally through it. The ship displaces a circular portion of this layer, and this
portion changes its position and its size. The rate of change of posiiion is expressed by an
apparent velocity of this circular portion, the motion of the air in the vertical layer is described
by the fwo-dimensional flow produced by a cirele moving with the same velocity, The momen-
tum of thiz flow is Svedz, where § 1s the area of the circle, and v the vertical velocity of the
cirele, and dz the thickness of the layer. Consider first the straight Hight of the ship under the
angle of pitch ¢. The velocity v of the displaced cireular portion of the layer is then constant
over the whole length of the ship and is ¥ ¢in ¢, where V is the velocity of the airship along the
circle. Not so the area S; it changes along the ship. At a particular layer it changes with the
rate of change per unii fime, 48

V cos - F

where z denotes the longitudinal coordinate.
Therefore the momentum changes with the rate of change

1-"2% gin 2¢§ —dr

This gives a down foree on the ship with the magnitude
JF=daV? sin 200 oo (29)

Next, considar the ship when turning, the angle of yaw being ¢. The momentum in each layer
Is again

wSpdx
The transverse velocity v 1s now variable, tve, as it is composed of the constant portion Vsin ¢,
produced by the yaw, and of the varisble portion ’Vg cos ¢, produced by the turning. =z=0

represents the aercdynamic center. Hence the rate of change of the momentum per unit
length is R

:r:;lo ]

T2 gin 2¢a—+p 20S ¢dz(a:b)

giving rise to the transverse force per unit length

V’p sin 2¢§S+ V2L cos q)(S -I-:vaz)

or otherwise written

ar=aa VL sin2o B+ 7L coso 5+ Vo2 cos geal ) oo @8)
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The first term agrees with the moment of the ship flying straight having a pitch ¢. The
direction of this transverse force is opposite ab the two ends, and gives rise to an unstable
rooment. The ships in practice have the bow turned inward when they fly in turn. Then the
transverse force ropresented by the first term of (24} is divected inward near the bow and out-
ward near the stern, : ,

The sum of the second and third terms of (24) pives no resultant force or moment. The
second term alone gives a transverse force, being in magnitude and distribution almoest equal to
the transverse component of the centrifugal force of the displaced air, but reversed. This latter
becomes clear at the cylindrical portion of the ship, where the two other terms are zero. The
front part of the cylindrical portion moves toward the center of the turn and the rear part
moves away from it, The Inward momentum of the flow has {o change inte an outward mo-
mentum, requiring an outward force acting on the air, and giving rise to an inward force
reacting thig change of momentum. '

The third term of (24) represents forces almost concentrated near the two ends and their
sum in magnitude and direction i3 equal to the transverse component of the centrifugal force of
the displaced air. They are direcied outward.

Ships only moderately elongated have resultant forces and a distribution of them differing
from those given by the formulas (23) and (24). The assumption of the layers remaining plane
1s moxre acourate near the middle of the ship than near the ends, and in consequence the trans-
vorse forces are dimmnished to s greater extent at the ends than near the cylindrical part when
compared with the very elongated hulls. In practice, however, it will often be exact enough
to assume the same shape of distribution for each term and to modify the transverse forces by
constant diminishing factors. These factors axe logically to be chosen different for the diffsrent
terms of (24). For the fixst term represents the forces giving the resultant moment proportional
to (k,—k,), and hence it is reasonable to diminish this term by multiplying it by (&,—%,). The
second and third terms take care of the moments of the air flowing transverse with a velocity
proportional to the distance from the aerodynamic center. The moment of inertia of the
momenta really comes in, and therefore it seems reasonable to diminish these terms by the
factor &', the ratio of the apparent moment of inertia to the moment of inertia of the displaced air.

The transverse component of the centrifugal force produced by the air taken along with the
ship due to its longitudinal mass is neglected. Its magnitude i3 small; the distribution is dis-
cussed in reference (3} and may be omitted in this treatise.

The entire transverse force on an airship, turning under an angle of yaw with the velocity
V and a radius r, is, according to the preceding discussion,

dF=dx[(k,~kl)§—iI”5— sin 29+ ' V28 ms¢+krvs§—”-‘f§ c0s ¢]-- e (25)

This expression does not contain of course the air forces on the fins,

In the first two parts of this paper I discussed the dynamical forees of bodies moving
along a straight or curved path in a perfect fiuid. In particular I considered the case of a very
elongated body and as a special case again one bounded by a surface of revolution.

The hulls of modern rigid airships are mostly surfaces of revolution and rather elongated
ones, too. The ratio of the length to the greatest diameter varies from 6 to 10. With this
elongation, particularly if greater than 8, the relations valid for infinite elongation require
only a small correction, only a few per cent, which ean be estimated from the case of ellipsoids
for which the forces are known for any elongation. It is true that the transverse forces. are
not only increased or decreased uniformly, but also the character of their distribution is slightly
changed. But this can be neglected for most practical applications, and especially so since
there are other differences between theoretical and actual phenomeris.

Sericus differences are implied by the assumption that the air is & perfect fluid. It is not,
and as a consequence the air forees do not agree with those in a perfect fluid. The resulting
air force by no means gives rise to a resulting moment.only; it is well known that an airship
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hull model without fins experiences both a drag and a lift, if inclined. The discussion of the
drag is beyond the scope of this paper. The lift is very small, less than 1 per cent of the
lift of & wing with the same surface area. But the resulting moment is comparatively small,
too, and therefore it happens that the resulting moment about the center of volume is only
about 70 per cent of that expected in a perfect fluid. It appears, however, that the actual
resulting moment is at least of the same range of magnitude, and the contemplation of the
perfect Huid gives therefore am explanation of the phenomenon. The difference can be
explained. The flow is not perfectly irrotational, for there are free vortices near the hull,
especially at its rear end, where the air leaves the hull. They give a lift acting at the rear
end of the hull, and hence decreasing the unstable moment with respect to the center of volume
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What is perhaps more important, they preduce a kind of induced downwash, diminishing the
offective angle of attack, and hence the unstable moment.

This refers to airship hulls without fing, which 2re of no practical interest. Airship hulls
with fins must be considered in s different way. The fins are a kind of wings; and the flow
around them, if they are inclined, is far from being sven approximately.irrotational and their
lift is not zers. The circulation of the inclined fins is not zero; and as they are arranged in the
rear of the ship, the vertical flow induced by the fins in front of them around the hull is directed
upward if the ship is nosed up. Therefore the effective angle of attack is increased, and the
influence of the lift of the hull itself is counteracted. For this reason it is to be expected that
the transverse forces of hulls with fins in air agree better with these in a perfect fluid. Some
model tests to be discussed now confirm this,
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These tests give the lift and the moment with respect to the center of volume at different
angles of attack and with two different sizes of fins.. If one computes the difference between
the observed moment snd the expected moment of the hull alone, and divides the difference
by the observed lift, the apparent center of pressure of the lift of the fins results. If the conter
of pressure is situated near the middle of the fins, and it is, it ean be inferred that the actual
flow of the air around the hull is not very different from the flow of a perfect fluid. It follows,
then, that the distribution of the transverse forces in a perfect fluid gives a good approximation
of the actual distribution, and not only for the case of straight flight under consideration, but
also if the ship moves along a circular path.

The model tests which T proceed to use were made by Georg Fuhmmnn in the old Goet-
tingen wind tunoel and published in the Zeitschrift fir Flugtechnik und Motorluftschiffahrs,
1910. The model, represented in Figure 3, had a length of 1,145 millimeters, a maximum
diameter of 188 millimeters, and a volume of 0.0182 cubic meter. Two sets of fing were
attached to the hall, one after another; the smaller fing were rectangular, 6.5 by 13 centimeters,
and the larger ones, 8 by 15 centimeters. (Volume)??=0.069 square meter. In Figure 3 both
tins are shown. The diagram in Figure 2 gives both the observed lift and the moment expressed
by means of absolute coeflicients. They are reduced to the umit of the dynaimical pressure,
and slso the moment is reduced to the unit of the volume, and the lift to the unit of (volume} 24,

a _,.l‘r";"-""‘b .
T o T R Ay T T
(L ) Angle of offock
FiG. 3.— Ajrship modal. Fia. 4.—Centor of pressure of Gn (oTees,

Diagram Figure 4 shows the position of the center of pressure computed as described
before. The two horizontal lines represent the leading and the trailing end of the fins, It
appears that for both sizes of the fins the curves nearly agree, particularly for greater angles
of attack at which the tests are more aceurate. The center of pressure is situated at about
40 per cent of the chord of the fins. I conclude from this that the theory of a perfect fluid
gives a good indication of the actual distribution of the transverse forces. In view of the
small scale of the model, the agreement may be even better with actual airships.

1IIl. SOME PRACTICAL CONCLUSIONS.

The last examination seems to indicate that the sctual unstable moment of the hull
in air agrees nearly with that in a perfect fluid. Now the actual airships with fins are statically
unstable (as the word is generally understood, not aerostatically of course), but not much so,
and for the present general discussion it can be assumed thst the unstable moment of the hull
is nearly mneutralized by the transverse force of the fins. I have shown that this unstable

moment is M= {(volume) {k,—%,) V’%— sin 2¢, where {(k,—%,) denotes the factor of correction
due to finite elongation. Its magnitude is discussed in the firsé part of this paper. Hence the

M N .
trangverse foree of the fins must be about. -~ where g denotes the distance between the fin and

the center of gravity of the ship. Then the eﬂ'ectwa area of the fins—that is, the ares of & wing -

giving the same lift in & two-dimensional flow—follows:
(Volume) (k, — k,)

L
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Taking into account the span & of the fins—that is, the distance of two utmost points of a pair
of fins—the effective fin area § must be
142 5
(Volume) (k, - %,) 7
¢

T

This area §, however, is greater than the actual fin aresa. Iis exact size is uncertain, but a far
better approximation than the fin area is obtained by taking the projection of the fing and the
part of the hull between them. This is particularly tiue if the diameter of the hull between
the fins is small.

If the ends of two airships are similar, it follows that the fin area must be proportional
to (k,—k)(volume}/a. For rather elongated airships (k,—%,) is almost equal to 1 and corn-
stant, and for such ships therefore it follows that the fin area must be proportional to (volume)/a,
or, less exactly, to the greatest eross section, rather than to (volume)*®, Comparatively short
ships, however, have a factor (k,—k,) rather variable, and with them the fin area is more nearly
proportional to (volume)s.

This refers to circular section airships. Hulls with elliptical section require greater fins
parallel to the greater plan view. If the greater axis of the ellipse is horizontal, such ships are
subjected to the same bending imoments for equal lift and size, but the section modulus is
smaller, and hence the siresses are increased. They require, however, a smaller angle of attack
for the same lift. The reverse holds true for elliptical sections with the greater axes vertical.

If the atrship flies along a circular path, the centrifugal force must be neutralized by the
transverse force of the fin, for only the fin gives a considerable resultant transverse force. At
the same time the fin is supposed nearly fo neutralize the wnstable moment. I have shown
now that the angular velocity, though indeed producing a considerable change of the distribution
of the transverse forces, and hence of the bending moments, does not give rise to a resulting
force or moment. Hence, the ship flying along the circular path must be inclined by the same
angle of yaw as if the transverse force is produced during a rectilinear flight by pitching, From
the equation of the transverse force

Volle,— k) V5 sin 24

T Vz _
Vol p—f_- = P
it follows that the angle is approximately
a 1
LG = 3

This expression in turn can be used for the determination of the distribution of the transverse
forees due to the inclination, The resultant transverse force is produced by the inclination
of the fins. The rotation of the rudder has chiefly the purpose of neutralizing the damping
moment of the fins themselves.

From the last relation, substituted in equation (28), follows approximately the distribution
of the transverse forces due to the inclination of pjtch, consisting of

d8 ., p 2¢
EEVzTFdx"""""'"'"'“‘"'"“"'“(26)

This is only one part of the transverse forces. The other part is due to the angulsr velocity;
it i approximately :

2
A L PRI -

The first term in (27) together with (26) gives a part of the bending moment. The second
term in (27}, having mainly a direction opposite to the first one and to the eentrifugal foree,
is almost neutralized by the centrifugal forces of the ship and gives additional bending moments
not very considerable either. It appears,then, that the ship experiences smaller bending moments
when creating an air force by yaw opposite to the centrifugal force than when ereating the same
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trangverse force during a straight flight by pitch. TFor ships with elliptical sections this can not
be said so generally. The second term in (27) will then less perfectly neutralize the centrifugal
force, if that can be said at all, and the bending moments become greater in most cases.

Most airship pilots are of the opinion that severe aerodynamic forces act on airships
flying in bumpy weather. An exact computation of the magnitude of these forees is not possible,
as they depend on the strength and shape of the gusts and as probably no two exactly equal
austs cceur,  Nevertheless, it i3 worth while to reflect on this phenomenon and to get acquainted
with the underlying general mechanical principles. It will be possible to determine how the
magnituds of tha velocity of flight influsnees the air forces due to gusts. Tt even becomes
possible to estimate the magnitude of the air forces to be expected, though this estimation will
necessarily be somewhat vague, due to ignorance of the gusts.

The airship is supposed te fly net through still air but through an atmosphere the different
porticns of which have velocities relative to each other. This is the cause of the air forces in
bumpy weather, the airship coming in contact with portions of air having different velocities.
Hence, the configuration of the air flow around each portion of the airship is changing as it
always has to conform to the changing relative velocity between the portion of the airship and
the surrounding air. A change of the air forces produced is the consequence.

Even an airship at rest experiences aerodynamical {forces in bumpy weather, as the air moves
toward it. This is very “pronounced near the ground, where the shape of the surrounding
objects gives rise to viclent local motions of the air. The pilots have the impression that at
greater altitides an airship at rest does not experience noticeable air forces in bumpy weather.
This is plausible, The hull is struck by portions of air with relatively small velocity, and as the
forces vary ss the square of the velocity they can not become large.

It will readily be seen that the moving airship can not experience considerable air forces
- if the disturbing sir velocity is in the direction of flight. Only a comparatively small portion
of the air can move with a horizontal velocity relative to the surrounding air and this velocity
can only be small. The effect can only be an air force parallel to the axis of the ship whichis
not likely to create large structural stresses.

_ There remains, then, as the main problem the airship in meotion coming in contact with air

moving in a transverse direction relative to the air surrounding it a moment before. The
stresses produced are severer if a larger portion of air moves with that relative velocity, It is
. therefore logical to consider portions of air large compared with the diameter of the sairship;
smaller gusts produce smaller air forces. Tt is now assential to realize that their effect is exactly
the same as if the angle of attack of a portion of the sirship is changed. The air foree acting
on each portion of the airship depends on the relative velocity between this portion and the
surrounding air. A relative fransverse velocity w means an effective angle of attack of that
portion equal o «/V, where V denotes the velocity of flight. The airship therefore is now to
be considered as having a variable effective angle of attack along its axis. The magnitude of
the superposed angle of attack is «/V, where 4 gencrally iz variable. The air force produced at
each portion of the airship is the same as the air force at that portion if the entire airship would
have that particular angle of attick.

The magnitude of the air foree depends on the coniecity of the airship portion as described in
section 2. The force is proportional to the angle of attack and to the square of the velocity of
flight. In ¢his case, however, the superpoused paré of the angle of attack varies inversely as the
velocity of flight. Tt results, then, that the air forces created by gusts are directly proportional
to the velocity of flight. Indeed, as I have shown, they are proportional to the product of the
velocity of flight and the transverse velocity relative to the surrounding air.

A special and simple cass to consider for a closer investigation is the problem of an airship
immersing from air at rest into air with constant transverse horizontal or vertical veloeity.
The portion of the ship already immersed has an angle of attack increased by the constant
amount «/ V. Either it can be assumed that by operation of the controls the airship keeps its
coutse or, better, the motion of an airship with fixed controls and the air forces acting on it
under these conditions can be investigated. As the fins come under the influence of the increased
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transverse vefocity later than the other parts, the airship is, as it were, unstable during the time
of immersing into the air of greater transverse velocity and the motion of the airship aggravates
the stresses.

In spite of this the actual stresses will be of the same range of magnitude as if the airship
flies under an angle of pitch of the magnitude u/V, for in general the change from smaller to
greater transverse velocity will not be so sudden and complete as.supposed in the last para-
graph. It is necessary chiefly to investigate the case of & vertical transverse relative velocity «,
for the severest condition for the airship is a considerable angle of pitch, and a vertical velocity
% increases these stresses. Hence it would be extremely important to know the maximum
value of this vertical velocity, The velocity in question is not the greatest vertical velocity of
portions of the atmosphere occurring, but differences of this velocity within distances smaller
than the length of the airship. It is very difficult to make a positive statement as to this
velocity, but it is necessary to conceive an idea of its magnitude, subject to a correction after
the question is studied more closely. Studying the meteorological papers in the reports of the
British Advisory Committes for Aeronautics, chiefly those of 190910 and 1912-13, T should
venture to consider a sudden change of the vertical velocity by 2 m./sec. (6.5 ft./sec.) as coming
nesr to what to expect in very bumpy weather. The maximum dynamic lift, of an airship is
produced at low velocity, and is the same as if produced at high velocity at & comparatively
low angle of attack, not more than 5°. If the highest velocity is 30 m./sec. (67 mi.thr.), the
B78%2_5.8% This is a little
smaller than 5°, but the assumption for « is rather vague. If can only be said that the stresses
due to gusts are of the same range of magnitude as the stresses due to piteh; but they are prob-
ably not larger.

A method for keeping the stresses down in bumpy weather is by slowing down the speed
of the airship. This is a practice common among experienced eirship pilots. This procedure
is particularly recommended if the airship is developing large dynamic lift, positive or negative,
as then the stresses are already large.

angle of attack u/V, repeatedly mentioned before, would be

i I :
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REPORT No. 191.

ELEMENTS OF THE WING SECTION THEORY AND OF THE WING
THEORY.

By Max M. MUNE.

SUMMARY.

The following paper, prepared for the National Advisory Committee for Aeronautics,
contains those results of the theory of wings and of wing sections which axe of immediate
practicel value. They are proven and demonstrated by the use of the simple conceptions of
“kinetic energy " and “momentum” only, familiar to every engineer; and not by introducing
““isogonal transformations” and *vortices,”” which latter mathematical methods are not
essential to the theory and better are used only in papers intended for mathematicians and

special experts.
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I. THE COMPLEX POTENTIAL FUNCTION.

1. I have shown in the paper, reference 1, how each air flow, considered as a whole,
possesses as characteristic quantities a kinetic energy and a momentum necessary to create it.
Many technically important flows can be created by & distribution of pressure and they then
have a “velocity potential” which equals this pressure distribution divided by the density
of the fluid with the sign reversed. It is further explained in the paper referred to how the
superposition of several “potential flows” gives a potential flow again.

The characteristic differential equation for the velocity potential @ was shovn to be

. ?
g_;’+g_£rf+ %‘fmﬁ? (Lagrange’s equation) (1)

where 2, y, and 2 are the eoordinates referred to axes mutually at right angles to each other.
The veloeity components in the directions of these axes are

umaq)‘ 1v=a__®° w=bj.
dx’ oy’ " 0z
I assume in this paper the reader to be familiar with paper reference 1, or with the fundamental
things contained therein.

2. The configurations of veloeity to be superposed for the investigation of the elementary
technical problems of flight are of the most simple type. It will appear that it is sufficient to
atudy two-dimensional flows only, in spite of the fact that all actual problems arise in three-
dimensional space. It is therefore a happy circumstance that there is a method for the study
of two-dimensional aerodynamic potential flows which is much more convenient for the nvesti-
gation of any potential flow than the method used in reference 1 for three-dimensional flow.

127



128

REPORT NATIONAL ADVISORY JOMMITTEE FOR ABRONAUTIOS.

The method is more convenient on account of the grester simplicity of the problem, there
being one coordinate and one component of velocity less than with the three-dimensional flow.
But the two-dimensional potential is still a function of two variables and it represents s distri-
bution of velocity equivalent to a pair of functions of two variables. By means of introducing
the potential a great simplification of the problem has been accomplished, reducing the number
of functions to one, This simplification can now be carried on by also reducing the number
of variables to one, leaving only one function of one variable to be considered. This very
remarkable reduction is accomplished by the use of complex numbers,

The advantage of having to do with one function of one variable only is so great, and
moreover this function in practical cases becomes so much simpler than any of the functions
which it represents, thet it pays to get acquainted with this method even if the student has
never oceupied himself with complex numbers before. The matter is simple and can be
explained in a few words.

The ordinary or real numbers, ¢, are considered io be the special case of more general
expressions (¢ +%y) in which ¥ happens to be zero. If ¥ is not zero, such an- expression is
called a complex number. z is its real part, 4y is its imaginary part and consists of the product
of y, any real or ordinary number, and the quantity 4, which is the solution of

= —1; i e, b= —1

The complex number (z+4y) can be supposed to represent the point of the plane with the
coordinates x and y, and that may be in this paragraph the interpretation of a complex num-
ber, So far, the system would be a sort of vector symbolism, which indeed it is. The real
part x is the component of a veetor in the direction of the real #-axis, and the factor y of the .
imaginary part iy is the component of the vector in the y-direction. The complex numbers
differ, however, from vector analysis by the peculiar fact that 1t is not necessary to learn any
new sort of algebra or analysis for this vector system. On the contrary, all rules of caleulation
valid for ordinary numbers are also valid for complex numbers without any change whatsoaver.

The addition of two or more complex numbers is accomplished by adding the real parts
and imaginary parts separately.

w+i) + @+ =z +2") +ily +¢7)

This amounts to the same process as the superposition of two forces or other vectors. The
multiplication is accomplished by multiplying esch part of the one factor by each part of the
other factor and adding the products obtained. The product of two real factors is real of
course. The product of cne real factor and one imaginary factor is imaginary, as appears
plausible.  The product of 44 is taken as — 7, and hence the product of two imaginary parts
is real again. Hence the product of two complex numbers is in general a complex number
again
@+ (e +iy") = @2’ —~yy") +ilay +2'y).

There is now one, as I may say, trick, which the studen: has to kmow in order to get the
advantage of the use of complex numbers. That is the introduction of polar coordinates. The
distance of the poini (r,3) from the origin (0,0) is called B and the angle between the positive

real axis and the radius vector from the origin to the point is called ¢, so that z=R cos o¢;
y=R sin ¢. Multiply now

(R, c0s ¢, +% B, sin p,) {R, cos o, -+ &, siD ¢,).
The result is
R, cos ¢, cos ¢, — B I, sin ¢, sin ¢, +1 (B, R, cos ¢, sin @, + B, R, sin ¢, cos @,)
or, otherwise written _
Rle [cos(‘Pj_ +‘P‘) +1 gin ((,01 +¢3)1
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That is: The radius B of the produet is the product of the radii B, and R, of the two factors,
the angle ¢ of the product is the sum of the angles ¢, and ¢, of the two factors. Further, as
is well known, we may write

Z2=R(cos ¢+isin o) =K e

where ¢ denotes the base of the natural logarithms.
As a particular case
fe #)0 = (008 o425l )%= cos B -1 i N o= gtr

This is Moivre’s formula. _

I proceed now to-explain why these complex numbers ean be used for the representation of a
two-dimensionsl potential flow. This follows from the fact that & function of the complex num-
bers, that is in general a complex number again different at each point of the plane, can be treated
exactly like the ordinary real function of one real variable, given by the same mathematical
expression. In particular it can be differentiated at each point and has then one definite differ-
ential quotient, the same as the ordinary function of one variable of the same form. The
process of differentiation of a complex funetion ig indeterminate, in so far as the independent
variable (zx+4y) can be increased by an element (dx+idy} in very different ways, viz, in
different directions. The differential quotient is, as ordinarily, the quotient of the increase of
the function divided by the increase of the independent varizble. One can speak of a differ-
ential quotient at each point only if the value results the same in whatever direction of (dz+idy)
the differential quotient is obtained. It has to be the same, in pariicular, when dx ox dy is zero,

The function to be differentiated may he

Fletipp=E {2, p+iT @, y)

where both B and T are real functions of 2 and 4. The differentiation gives

OF _OR +i .oT
] 9z Oz oz
or again
oF_ _ OR +bT
oy oy oy

These two expressmns must give identical results and hence are equal. That is, both the real
parts and both the imaginary parts are equal:

OR__oT, ok _ 0T,
dy_ o’ dy  ox
Differentiating these equations with respect to dz and dy

QR _@T_ 2T . T ¥T_,
. dedy oy o v 5 oy
Oor again
*T R B . DR 'R

-ax—ay—w— _W’ T £t W+W=O

Hence, it appears that the real part as well as the imaginary part of any analytical complex
funetion complies with equation (1) for the potential of an aerodynamic flow, and hence can be
such & potenttal. If the real part is this potential, I shall call the complex function the “poten-
tial funetion” of the flow. It is not practical, however, to split the potential function in order
to find the potential and to compuie the veloeity from the potential. The advantage of having
only one variable wonld then be lost. It is not the potential that is used for the computation
of the velocity, but instead of it the potential funetion directly. It is easy to find the velocity
directly from the potential function. Differentiate F{z+4y)= F(z). It is seen that '

ar 2) on E)T
= +%
T
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But it was shown hefore that
oT_ 3R
ox oy

dF(z) oE_.0R
Tdz ox ' dy

Hence

The velocity has the components %% and %. Written as a complex veetor, it would be %E +i %g.
It appears therefore:
Any analytical function F(z) can be used for the representation of a potential flow. The

potential of this flow is the real part of this potential function, and its differential quotient %IZ—F,

called the “velocity functiom,” represents the veloecity at each point “turned upside down.”
That means that the component of the velocity in the direction of the real axis is given directly

by the real part of the velocity function %Elr and the component of the velocity at right angles to

the real axis is equal to the reversed imaginary part of % The absolute magnitride of the ve-

_— . adF
locity is equal to the absolute magnitude of - -

3. I proceed now to the series of two-dimensional flows which are of chief importance for
the solution of the aerodynamic problems in practice. They stand in relation to the straight
line. The privileged position of the straight line rests on the fact that both the front view and
the cross section of a monoplane are approxi-
mately described by a straight lme. The different
types of flow to be discussed in this section have
in common that at the two ends of a straight
line, but nowhere else, the velocity may become
infinite. At infinity it is zero. This sugpgests
the potential funetion +/z7—1 which has discon-

sinmities at the points + 1 only, but it does not
@ give the velocity zero at infinity.
_ F=#—-1-2

gives rise to an infinite velocity abt the points
N z= + 7 which may be regarded as the ends of the
straight line, and in addition the velocity be-
comes zero &t infinity. A closer examination
shows that indeed the potential funetion

Fiz 1—Traosverss flow, produced by & moving straight lme, F= '.i,(z— "/2?1) (2}

represents the flow produced by the straight line extending between the points z= +1, moving
transversely in the direction of the negative imaginary axis with the velocity I in the fluid other-
wise at rest. For its velocity function is

P 2
P

giving for points on the line a transverse velocity — /.  This flow may be called ** transverse flow.”
The velocity potential at the points of the line, i. e., fory=0is 1 —2* This gives the kinetic
energy of the flow (half the integral of the product of potential, density and normal velocity
component, taken around the line (reference I)).
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1
r=!. s M # do=br (3)
i |

giving an apparent mass of the straight line moving transversely equal to the mass of the fluid
displaced by a circle over the straight line as diameter. This reminds us of the apparent
additional mass of the circle itself, which iz the same (ref. 1, sec. 6). It can be proved that
the additional mass of any ellipse moving at right angles to a2 main axis is equal to the mass of
the fluid displaced by a circle over this main axis as diameter (reference 6).

The flow around the straight line just discussed can be considered as a special case of a
series of more general lows, represented by the potential function

F=i@—j2-1)" (4}

where n is any positive integer. n=j gives the transverse flow considered before. For »
different from I the component of the transverse velocity along the straight line is no longer
constant, but variable and given by a simple law. Such a flow, therefore, can not be produeced
by a rigid straight line moving, but by a flexible line, being straight at the beginning and in the
process of distorting itself,

It is helpful to introduce as an suxiliary variable the angle & defined by z=cos & Then
the potential funetion is

F=4 (cos nd—1i sin nd) =1 ¢—ind

where 8 is, of course, complex. The potential along the line is
®=sin n &)
where now 4 is real, The velocity functien is

_dF JF ds_ ne=im

' T e b 3T T e e a2 iid i
F S dz  ds de sin 3 sin & {cos nd —1 sin nd}

giving at points along the line the transverse component

U i g ©
and the longitudinal component
7 C08 T
P=— Sin 8 - (7}

This becomes infinite at the two ends, The kinetic energy of the flow is

1 #rgin? ng o
This impulse is given by the integral
p S @dz

to be taken along both sides of the straight lines, since the velocity potential times s represents
the impulsive pressure necessary to create the flow, This integral becomes

fr
f sin né #in & d§

I
for the nth term. This is zero except for n=1.
By the superposition of several or infinitely many of the flows of the series discussed
F=ild,e~vZ =D+ A,e—+2 =T +. . .+ A z— yF—1)%, (9)

with arbitrary intensity, infinitely many more complicated flows around the straight line can be
described.  There is even no potential flow of the described kind around the straight line existing
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which can not be obtained by such superpesition. The kinetic energy of the flow obtained by
superposition sbands in a very simple relation to the kinetic energy of the single lows which rela-
tion by no means is self-evident, It is the sum of them. This follows from the computation of
the kinetic energy by integrating the produet of the transverse component of veloeity and the
potential slong the line. This kinetie energy is

T=—f (d,sind+4,sin 25+..) (A sind+24,sin 254, .)d8 {10)

But the integral
J: sin né ¢in mé ds=0 (n<m) (11

is zero if m and n are diffevent integers. For integrating two times partially gives the same
integral again, multiplied by (mfn)?. In the same way it can be proved that

J",F cos 1S ¢cos md dé=0 (nxm) {12)
1]

Only the squares in integral (10) contribute to the energy and each of them gives just the kinetic
energy of its single term (equation (8)).

It may happen that the distribution of the potential ® along the line is given, and the flow
determined by this distribution is to be expressed as the sum of flows (equation (9)). The
condition is, for points on the line, & known function of » is given,

P=A, 5in 6+ A, 80 25+, . .+ 4, 8D né+. .. {13)

and the coefficients A are to be determined. The right-hand side of equation (13} is called a
Fourier's series, and it is proved in the textbooks that the coefficients A can always be deter-
mined as to conform to the condition if @ has reasonable values. At the ends =0 or «, hence &
has to be zero there as then all sines are zero.

Otherwise expressed equation (4) gives enough different types of flow to approximate by
means of superposition any reasonable distribution of the potential over a line, with any exact-
ness desired. This being understood, it is sasy to show how the coefficients A can be found.

Integrate

L” (A, sind+d,sin 2 ...) sinnd db
According to equation (11} all integrals becoma zero with the exception of
4, f sin? nd ds= g
Hence _
Anﬁf ® sin 23 4o (14)
mJo

These values may be introduced into equation (9), and thus the potential function F is
determined.

Another problem of even greater practical importance is to determine the potential fune-
tions, equation (4), which superposed give a desired distribution of the transverse component
of velocity. The condition is now

sin. & sin 2§ |

w=2, o sin 6+2.n‘12 Sms T {15)
That means, now, u sin §, a known function, is to be expanded into a Fourier's series
1 sin =15, ¢sin 5+ H,sin 25+. . .+ B, sinnd (16)
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The B’s may he determined by an equation like {14), and then the A’s may be deduced, since
A,=Byin {16a)

This is always possib!e if the velocity component s finite along the line. These values may then
be introduced in equation (9.

The value of the potential function # as gwen by series (13) with the values of A, substituted
from (18) may be transformed into & definite integral which sometimes is more convenient for
application, Let «, be a function of the coordinate z,, a point on the line joining 2= —1 and
z= +1, and let #{z, z,) be a function to be determined so that

P f_t‘ Fr 2 + g « @0
I have found that this is gatisfied by making
=1 llog (6% %) ~log (1~ )] .am
and this leads to a physical interpretation of .

Henge, the velocity function
dF (*+ 4
F=%- -1 fiéu" a2,

The potential function and the velocity function are both thought of, then, as being the suinma-
tion of funetions due to “clementary flows.” An clement gives rise to a potential function

F{z,2,) u,dz, and to the velocity function ﬁf u,dz, (18)

#r _df _1sing, 1 Y T2k
Y gz zSin s cos d—cos &, ~rz—z,YI—2°

where the plus sign is to he taken for points on

the positive side of theline, and the negative sign

for those on the oppositeside. In this elemen-

tary flow, then, the velocity is parallel to theline

at all points of the line excepting the point 2, Fre. 2.—Flow around o siratght line sreated by cae elemontof ibe
being directed away from this point on the Wing 36640

positive side of the line and toward it on'the other side. For points close to 2,

_tydz, 1

I, dzy= =2,

from which the value of the velocity of the flow may be deduced. If & small circle 18 drawn
around the point z,, il is seen that there is a flow out from the point 2, of amount u, dz, per sec-
ond on the positive side aud an inflow of an equal amount on the other side; so that this is
equivalent to there being a transverse velocity u, at points along the element dz,, positive on
one side, negative on the other. The total flow around the line due to f(z , 2,) %, 82, 1s lustrated
in Figure 2,

Subsgtituting the value of f* in F”

' T g de, [1-20
F"iJ_, Tz—2, ¥ I-2°
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Therefore, for any point on the real axis, the transverse velocity is u, and the longitudinal
velocity

L, da, [T=2

- T2 2, ¥ 1-2

Y= +

Or, interchanging symbols, writing z for 2z, and wvice versa

B oydz [T-—2
= —_—— — g
=¥ -1 Tg_zoJ —2, (e
For a point near the edge on the positive side, write z,=1—¢
L I+z
v“g8=—r\/@ I_.l ude 1-2
or, substituting /%= sin 3,4,
_ I +H 14z
Cetre™ ~ 5 Buuge f_-, udzqly_, (192)

For the discussion of the elements of the wing theory, in addition to the flows mentioned,
thers is one flow which needs a discussion of its own, This is given by the potential function

F=4,sin™ 2 (20)
The velocity function of this flow is
A
d — _-""l_‘_—__
==z

1 shall call this flow “ecireulation flow” as it
representz a circulation of the air around the
line. The transverse component of the velocity
at points along the line is identically zero.

The circulation flow does not quite fit in
with the other ones represented by equation
(4), because the potential function (20) is a
multiple valued omne, the values at any one
point differing by 2 or multiples thereof. All

/ this indicates that the fiow is a potential flow,
it i true, but it does not eonform to the condi-
tion of a potential flow when considered as in
equation (4).

This is in accordance with the physical
consideration, that it is impossible to produce
this flow by an impulsive pressure over the
straight line. Such a pressure would not per-
form any mechanical work, as the trangverse

componenis of velocity at points along the line are zero. The kinetic energy of this flow, on

the other hand, is infinite, and hence this flow can noteven be completely realized. Sall it
plays the most important part in aerodynamics.

The best way to understand this flow and its physical meatiing is to suppose the line to be
elongated at one end, out to infinity, On the one side the potential may be considered zero.

Then it is constant and will be equal to 27 on the other side. The transverse velocity component

Frz 2 —Clrctilation fow sround a straight Lne.

_is finite. Hence the flow ¢an be produced by a constant impulsive pressure difference along

this line extending from the edge z=1 to infinity. This pressure difference makes the Huid
circulate around the original straight line, the pressure along the line itself being given by the
potential funcéion (20) and not performing any work.
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A pressure difference along an infinite line does never actually occur. At least t does nog
occur simultaneously along the whole line. A very similar thing, however, occurs very often
which has the same effect. That is a constant momentum being transferred to the air at
right angles to an infinite straight line at one point only, but the point traveling along the line,
so that the final effect is the same as if it had occurred simultaneously. This is the fundamental
case of an airplane flying along that infinitely long line. During the unit of time it may cover
the length ¥V and transfer to the air the momentum I, equal to the lift of the airplane. Then
tho impulse of the foree, per unit of length of the line, is L/V, and hence the potential difference is

L . . L .
7S That makes A, in equation (20) 4,= Vor If the airplane has traveled long enough,

the flow in the neighborhood of the wing, or rather one term of the flow, is described by the
circulation flow, provided that the airplane is two-dimensional, that is, has an infinite span.
The velocity at the end of the wing #= +7 due to this circulation flow

F—4,sin z,

where .
. di=g o7 (21)
18 L
A, _
Veior= (-?'m'—a i=g  ZnpV (310 §)j-0 (21a)

II. THEORY OF WING SECTION.

4. The investigation of the air flow around wings is of great practical importance in view
of the predominance of heavier-than-air eraft. Tt is necessary to divide this problem into two
parts, the consideration of the cross section of one or several wings in a two-dimensional Aow,
snd the investigation of the remaining effect. This chapter is devoted to the first question.

All wings in practice have a more or less rounded leading edgs, a sharp trailing edge and
the section is rather elongated, being as first approximation described by a straight line. The
application of the aerodynamic flows around a straight line for the investigation of the flow
around a wing section suggests itself. I have shown in section (3) how the potential flow
around & straight line is determined, for instance, from the transverse components of velocity
along this line. Only one type of flow, the circulation flow, is excapted. This flow does not
possess any transverse components at the points of the line and henee can be superposed on &
potential flow of any magnitude without interfering with the condition of transverse veloecity.
I have shown, on the other hand, that it is just this circulation flow not determined so far,
which gives rise to the chief quantity, the lifs. It is, therefors, necessary to find some additional
method for determining the magnitude of the circulation flow.’ ]

This magnitude of the cireulation flow is physically determined by the fact that the air
is viseous, no matter how slightly viscous it is. The additional condition governing the magni-
tude of the circulation flow can be expressed without any reference to the viscosity and was
done so in a very simple way by Kutta. The condition is very plausible, too. Kutta's condition
simply states that the air does not flow with infinite velocity at the sharp, rear edge of
the wing section. On the contrary, the circulation flow assumes such strength that the air
leaves the section exactly at its rear edge flowing there along the section parallel to its mean
direction. The wing as it were acts as a device forcing the air to leave the wing flowing in a
particular direction.

Consider, for instance, the wing section which consists merely of & straight line of the length 2.
The angle of attack may be «. The flow produced by this line moving with the velocity Vis
then represented by the potentisl function

F=TVging.1e¥

which gives a constant transverse component of velocity along the wing, as shown in equation
(6) for n=1. The real axis is parallel to the straight line, its origin is at the center of the line.
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The infinite longitudinal velocity at the rear end is

. 7
— TV sin « - m‘;-o

The anhgle of attack may now be assumed to be small and T change slightly the way of
representing the flow, turning the resl axis of coordinates into the direction of motion. Instead
of referring the flow to the line really representing the wing section I consider the straight line
between 2= + 1, which differs only slightly from the wing and is parallel to the motion. The
transverse components of the flow relative to this line are approximately equal to the transverse
veloeity relative to the wing section at the nearest point and therefore constant again and equal
to Vsin «. Therefore, this way of proceeding leads to the same flow as the more exact way
before. It also gives the same infinite velocity at the rear end.

This velocity determines the magnitude of the circulation flow
F=A sin™ z {21)
by the condition that the sum of their infinite velocities at the edge is zero.

1
@ e Gl

Vsin o

and hence A,=FV sin & The lift is therefore

L=2r V¢ psin a.

The lift coefficient, defined by (.= o since the chord =2, is therefore,

§vVa
Cp=2r gin a, or approximately Z7a (22)
and
L=w£ S B (23)

where § denotes the area of the wing,

The representation of the flow just employed is approximately correct and gives the same
result as the exact method. . This new method now can be generalized so that the lift of any wing
section, other than & straight line, can be computed in the same way, too. The section can be
replaced with respect to the aerodynamic effect by a mean curve, situated in the middle between
the upper and lower curves of the section and having at all points the same mean direction as
the portion of the wing section represented by it. The ordinstes of this mean wing curve may

he £, the abscissa x, so that the direction of the curve at each point i8 % This direction can

be considered as the local angle of attack of the wing, identifying the sine and tangent of the
angle, with the angle itself. Accordingly it is variable along the section. Since the velocity of
the air relative to the wing is spproximately equal to the velocity of flight, the component at

right angles to the x-axis is -Z—ié As before, the infinite velocity at the rear edge is to be found.

-V_ tdi [I+z
O Py LEET o en

_ It is, according to equation (19a)
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At the rear edge #=7, The mesn apparent angle of attack, that is the angle of attack of the
straight line giving the same lift a3 the wing section, is found by the condition that this infinite

value must be the same as that deduced for a straight line; viz, — I;is:lnaa. Hence, replacing
sin « by « "

1 dt¢ [1+x th=2 25

o' = _;Jt” z md:c leng (25}

/ 2HrdE 1422 dolength =1 (258)

T T &V I-2

This formula holds true 1. any small angle of attack of the section. The integral can now
be transformed into one containing the coordinate ¢ rather than the inclination g—i of the wing
curve, provided that the trailing edge is situated at the z-axis, that is, if £ is zero at the end
x=+1. This transformation is performed by partial integration, considering g’f} du as a factor

tobeintegrated. Itresults

r_I + ___dx_g_; _ o6
[a ] —v; - (1 —15) ’«1__2:2 length 2 ( )

’---é’ i &_ noth — 5
a’_f.ﬁm (I-22) VI—4® length 1 (26a)

The important formula (26) gives the mesn apparent angle of attack direetly from the
coordinates of the shape of the wing section. The mean height £ of the section hag to be inte-
grated along the chord after having been multiplied by & function of the distance from the
leading edge, the same for all wing sections,” This integration can always be performed, whether
the section be given by an analytical expression, graphically or by a table of the coordinates.
In the latter case a numerical integration can be performed by means of Table II, taken from
reference 4.  The figures in the first column, give the distance from the leading edge in per cent;
of the chord. The second column of figures gives factors for each of these positions. The
height £ of the mean curve of the section over its chord, measured in unit of the chord terms,
i to be multiplied by the factors, and all products go obtained are to be added. The sum gives
- the apparent angle of attack in degrees.

5. The lift of a wing section as computed in section (4) is caused by the circulation flow
syminetrical with respect te the straight line representing the wing, Hence the pressure creat-
ing this lift is located symmetrically to the wing, its center of pressure is at 50 per cent of the
chord, it produces no moment with respect to the middle of the wing. This lift is the entire
lift produced by the wing. It is not, however, the entive resultant air forece. The remaining
asrodynamic flow in general exerts a resultant moment (couple of forces) and this moment
removes the center of pressure from its position at 50 per cent.

If the wing section is a straight line of the length 2, its apparent transverse mass is o, 48
seen in section (4). The longitudinal mass is zero. Henee, according to reference 1, the result-
ant moment is

M=V? 5 rsin 2 length=2 @7

M~V 5 2va length-2 (28)

Both the exact and the approximate expressions give the constant center of pressure 25 per cent
of the chord from the leading edge, as results by dividing the moment by the lift (28).

The straight sections considered have a constant center of pressure, independent of the angle
of attack. The center of pressure does not travel. This is approximately true also for symmet-
rical sections with equal upper and lower curves, where the center of pressure is also at 25
per cent. If, however, the upper and lower curves are different and henee the mean section

52201 —25-—1T11
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curve is no longer a straight line, the potential flow produced at the angle of attack zero of the
chord not only gives rise to the circulation flow and thus indireetly to a lift, but also creates a
moment of its own. It is simple to compute this moment from the potential flow, which is
represented in equation (9) as a superposition of the flows, equation (4).

The longitudinal velocity relative to the line is, aceording to equation (7),

Cos & 2 cor 25 f# e08 ns "
(Aamﬁ Ai—gms ¥ 0t “smﬁ)v :

As the section is supposed to be only slightly curved, gﬁ is always small, so are, therefore, the ,

coefficients 4, when compared to V, so thet they may be neglected when added to it. The i
pressure at each point along the line, according to reference I, is 1|
i
|

P =§' v . !"-_:.5-

g

The present object is the computation of the resultant moment. Vhen really forming the :

square of the bracket in the last expression, the term with V2 indicates a constant pressure and
does not give any resuliant moment, The squares of the other terms are too small and can be

neglected. There remains only the pressure, ﬁ

- cos & 2 cos 28
4 pV(Al o 8+A o R )

giving the resultant moment about the origin

M= QVpJ'(A m” gc?s 2, )oosasinada,

‘sm5 4, sin &

since the demsity of lift is twice the density of pressure, .the pressure being equal and opposite
on both sides of the wing. But according to (12)

j*cosnacos mé =0 (12)
if m and n are different integers. Hence there remains only one term. The resultant moment is
M=20V A, %

A4, was found according t0 equation (14) by means of the integral
=2 J v & Tsin* 648
Hence the moment is

o2 [T %
M=2o L Tt sds
or, expressed by =

+1 d£
=2 [ E VT e (29)
By the same method as used with integral (25) this integral can be transformed into
1 ogpdrk
= 30
M2V f A (30)
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It has been shown that for a chord of length 2, the center of pressure has a lever aa‘m'% and the
lift is Vzg - Zra - 2, giving a moment Vlowe; s0 that an angle of attack corresponds to a

moment Vipra. Congequently the resultant moment is the same as if the angle of attaek ig
increased by the angle

Hz_gf“rcdx.f _
a''==] ﬁ_wzlength 2 (31)
nLLE (T nde g length=1 (32)

Y EPSN; payr-

1t is readily seen that this angle is zero for sections with section curves equal in front ana
in rear. Hence such sections have the center of pressure 50 per cent at the angle of attack zéro
of the mean curve, that is, for the lift (24) produced by the shape of the section only. The
additional lift produced at any other angle of atiack of the chord and equal to the lift as produced
by the straight line at that angle of attack has the center of pressure at 25 per cent. Hence a
travel of the center of pressure takes place toward the leading edge when the angle of attack is
increased, approaching the point 25 per cent without ever reaching it. The same thing happens
for other sections with the usual shape. At the angle of attack zere of the chord the lift pro-
duced was seen to be 2xr Vipa', i. e., from (26)

"+1 ar £
L=7:% SR S—
'[7:2 4 -1 {1 —2)+fT—2
and the moment, see equation (30},
_ g & de
M=2pV% LT (30)

giving the center of pressure at the distance from the middle

+1 5 E dx
. ‘,‘ — 2
Jv_,_l = érx ; length =2
a{I—x) T -
The lift produced by the angle of attack of the chord, equation (23) as before has the center of
pressure 25 per cent. The travel of the center of pressure can easily be obtained from this

statement. The moment about the point 25 per cent is independent of the angle of attack.
The center of pressure in ordinary netation at the angle of attack zero is

+lm£dx

. L VI—2?
OP=50% — 50 —x ‘g{me %
L (I —z)+1 -2

The computation of the mean apparent angle of attack with respect to the moment is done In

the same way as that of the angle with respect to the lift. Table II, gives the coefficients for
numerical integration, by means of two ordinates only, to be used as the other figures in Table I1.
The final sum is the mean apparent angle in degrees.

6. The problem of iwo or even more wing sections, combined to a biplane or multiplane and
surrounded by a two-dimensional flow can be treated in the same way as the single wing section,
The two sections determine hy their slope at each point a distribution of transverse velocity.
components along parallel lines. The distribution determines a potential flow with a resultant
moment, According to Kutta's condition of finite velocity near the two rear edges, the potential
flow in its turn determines & circulation flow giving rise to a lift and moment. The physical
aspect of the question offers nothing new, it is a purely mathematical problem.
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This mathematical problem has not yet been solved in this extension. I have attacked
the problem within a more narrow scope (reference 4). The method followed by me amounts to
the following considerations:

Equation (13) represents different types of flow around one straight line, consisting in a
motion of the air in the vicinity of the straight line only. Now the motion of the flows with high
order « is more concentrated in the immediate neighborhood of the straight line than the flows
of low order n. The transverse velocity components along the line, determining the flow, change
their sign (n— 1) times along theline. With large n, positive and negative components follow each
other in succession very rapidly so that their effect is neutralized even at a moderate distance.

Hence the types of flow of high order n around ¢ach of a pair of lines will practically be the
same as if each line is single. The flows of high order do not interfere with those of a second line
in the vicinity even if the distance of this second line is only moderate. It will chiefly be the
types of flow of low order, the circulation flow n=0, the transverse flow n={, or it may be the
next type =2 which differ digtinctly whether the wing is single or in the vicinity of a second
wing. Accordingly, I computed only the flows of the order n=0 and n=1, the circulation flow
and the transverse flow for the biplane and used'the other flows as found for the single section.

The results are particularly interesting for biplanes with equal and parallel wings withous
stagger. Their lift is always diminished when compared with the sum of the lifts produced by
the two wings when single. The interference is not always the same. If the sum of the angle
of attack and the mean apparent angle of attack with respect to the moment is zero, or other-
wise expressed, at the angle of attack where the center of pressure is at 50 per cent, it is par-
ticularly small. The 1ift produced at the angle of attack zero is diminished only about half as
much as the remaining part of the lift produced by an increase of this angle of attack.

This second paxt of the lift does not have its point of application exactly at 25 per cent of
the chord, although its center of pressure is constant, too. This latter is quite generally valid for
any two-dimensional flow. At any angle of attack zero arbitrarily chosen, the configuration of
wing sections produces a certain lift acting at a certain center. The increase of the angle of
attack produces another lift acting at another fixed point. Hence the moment around this
second center of pressure does not depend on the angle of attack; and the center of pressure at
any angle of attack can easily be computed if the two centers of pressures and the two parts of
the lift are known.

The resultant moment of the unstaggered biplane consisting of portions of equal and
parallel straight lines is again proportional to the apparent transverse mass, as the longitudinal
mass is zero (reference 1). This mass is of use for the considerations of the next chapter, too.
Therefore, I wish to make some remarks concerning its magnitude. If the two straight lines are
very close together, the flow around them is the same as around a line of finite thickness and is
almost the same as around one straight line. Tts apparent mass is the same, too, but in addition
there is the mass of the air inclosed in the space between the two lines and practically moving
with them. Hence the mass is approximately

b(bz—ﬂe)p

where & is the length of the lines and % their distance apart, if the distance % of the lines is small.
For great distance, on the other hand, the flow around each of the lines is undisturbed, the
apparent mass is iwice that of the flow around each line if single. It is therefore

26’%9

For intermediate cases the apparent mass has to be computed. Particulars on this computa-
tion are given in reference 4. Table 1 gives the ratio of the apparent mass of a pair of lines to

that of one single line for different values of % This ratio, of course, is always between 1 and 2.
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These few remarks on the theory of biplane sections seem to be sufficient in this treatise
on the elements of wing theory. The student will find full information on the subject in my
paper on biplanes, reference 4. The remarks laid down here, I hope, will assist him in under-
standing the leading principles of the method there employed.

1. AERODYNAMIC INDUCTION.

- 7. The last chapter does not give correct information on the serodynamie wing forces,
since the flow in vertical longitudinal planes was supposed to be two-dimensional. The vertical
layers of air parallel tn the motion were supposed to remain plane and parallel and only the
distortion of the two other planes at right angles to it was investigated. This is & very incom-
plete and arbitrary: proceeding, for the vertical longitudinal layers do not remain plane, as

 little as any other layers remain plane. It is therefore necessary to complete the investigation
and to assume now another set of layers, parallel to the lift, to remain plane, thus studying
the distortion of the vertical longitudinal layers. Accordingly, T will now assume that all
vertical layers of air at right angles to the mostion remain plane and parallel, so that the air
only moves ab right angles to the direction of flicht. Hence, I have now to consider two-
dimensional transverse vertical flows. This consideration, it will appear, gives sufficient
information on the motion of the air at large, whereas the preceding investigation gives infor-
mation on the conditions of flow in the vicinity of the wing. Both, the longitudinal two-
dimensional flow studied hefore and the two-dimensional flow to be studied presently, possess
vertical components of veldeity. Both flows and in particular these vertical components
are to be superposed, and thus one can determine the final aerodynamic pressures and resultant
forces. .

The transverse vertical layer of air is at rest originally. The wings, first approaching it,
then passing through it and at last leaving it behind them, gradually build up a two-dimensional
flow in each layer. The distribution of impulse creating this flow is identical with the distri-
bution of the lift over the longitudinal projection of the wings. It is immaterial for the finel
effect whether all portions of the wings at every moment have transferved the same fraction
of the momentum to a particular layer or not. The final effeet and hence the average effact
is the same as if they always have. They actually have if all wings are arranged in one trans-
verse plane—that is, if the airplane is not staggered. It may be assumed at present that st
each moment each layer has received the same fraction of the impulse from every portion of
the wings and it follows then that the shape of the configuration of the two-dimensional flow
is always the same and that it is built up gradually by increasing its magnitude while not
changing its shape, beginning with the magnitude zero at a great distance in front of the wing
and having obtained its final magnitude at a great distance behind the wings,

The potential of the final two-dimensional flow long after the wings have passed through
the layer is easy to find, for the impulsive pressure creating it is known slong the longitudinal
projection of the wings. It is identical with the distribution of the lift over this projection,
acting as long as the airplane stays in the layer. This is the unit of time, if the thickness of
the layer is equal to the velocity of flight. Hence the potential difference along the longi-
tudinal projection of the wings is equal to the density of the lift along this projection divided
by the product of the density of air and the velocity of flight, since thé velocity potential is
equal to the impulse of the pressure creating the flow, divided by the density. In general the
longitudinal projections of the wings can be considered as lines. The density of lift per unit
length of these lines is then equsal to the difference of pressure on both sides, and hence the
density of the lift is proportional to the difference of the potential on both sides. This state-
ment determines completely the final two-dimensional flow in the transverse vertical layer,
and nothing remains unknown if the distribution of the lift over the wings is given. The
actual determination of the flow is then a purely mathematical process.
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For the present purpose, however, not the final transverse flow but the vertical flow at the
moment of the passage of the wings is of interest. It s this flow that is to be superposed on
the longitudinal flow in order to determine the actual air forces. It has slready been men-
tioned that this flow can be supposed to differ from the final flow in magnitude only. It
remains therefore only te find the ratio of momenium already transferred while the wing passes
through the layer, to the momentum finally to be imparted.

The fraction 14 seems to me more plausible than any other fraction. The effect of the
wing on the layer is the same at equal distances from the layer, whether in front or back of it
and this would involve the factor 14. It is not neccssary, however, to have recourse to a mere
assumption in this question, however plausible it may be. It can be proved that the assump-
tion of 14 is the only one which does not lead to a contradiction with the general prineiples of
mechanics. I proeeed at once to demenstrate this.

If the transverse flow in the plane of the wings is found, only the vertical component down-
ward u’, called the induced downwash, is used for the computation. This downwash can be
positive or negative, but in general is positive. Such downwash in the neighborhood of a
portion of wing changes the motion of the air surrounding the wing portion relative to it. The
induced downwash is always small when compared with the velocity of flight. Hense, its
superposition on the velocity of flight at right angles to it does not materially change the mag-
nitude of the relative motion between the wing and the air in its vieinity. It changes, however,
the direction of this relative velocity, which iz no longer parallel to the path of the wing but
inciined toward the path by the angle whose tangent is «'/V. This has two important
CONSeqUEnces.

The flow produced and hence the air force no longer correspond to the angle of attack be-
tween the wing and the path of flight but to the angle given by the motion of the wing relative
to the surrounding portion of the air. In most cases the angle of attack is decreased and the
effective angle of attack, smaller than the geometric angle of attack between path and wing,
determines now the flow and the air forces. Henece, the lift in general is smaller than would
be expected from the geometric angle of attack. The angle of attack in the preceding chapter
on the wing section is not identical with the geometric angle between the chord and the direc-
tion of flight but with the effective angle of attack, smaller in general, as there is an induced
downwash motion in the vicinity of “the wing. Therefore the geomeirical angle of attack is

decreased by ,
a,-=3;’—, (34)

That is not all. The lift is not only decreased but its direction is changed, too. It is no
longer at right angles to the path of flight, but to the relative motion between wing and adjacent,
portion of air. It is gemerally turned backward through an angle equal to the induged angle
of attack. The turning backward.of the lift by itself does not materially change the magni-
tude of the lift, as the angle is always small; the vertical component of the lift remains almost
the same, but the effective angle of attack has to be decreased. In addition to this the air force
has now a component in the direction of the motion. The wing experiences an “induced”
drag, in addition o the drag caused by the viscosity of the air, not discussed in this paper,
and the induced drag is often much larger than the viscous drag. The density of the induced

drag is dL % where dL 1s the density of lift, as can be directly seen from Figure 4,
%' .
The existence of a drag could have been anticipated, as there must be a source of energy

for the creation of the transverse flow under consideration. The final kinetic energy of this
flow in a layer of thickness Tis
!
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and this energy s to be delivered by the wing per unit of time, as during this unit of time
another layer has been put into motion in the way discussed. On the other hand the energy
delivered by the wings is the integral over the drag multiplied by the velocity, that is, /'dL 4/,
From which follows immediately u’=éu, and it is thus confirmed that the transverse flow
is only half formed when the wings are passing through the vertical layer.

8. The problem is thus solved in general if the shape of the wings and the distribution
of lift over the wings is known, Before passing to special wing arrangements and distributions
of lift, in particular to the simaple monoplane, there is one genersl problem to be discussed.
The longitudinal projection of the wings being given, as well as the entire lift, the induced
drag depends on the distribution of the lift over the projection. The drag is desired to be as
small as possible. The gquestion arises, What is the distribution of lift giving the smallest
induced drag? The importance of this question is at once obvious,

The entire 1ift and the entire induced drag of the wings are found again as important
characteristics of the final transverse flow, discussed in the last section. The resultant lift
is equal to the resultant vertical momentum of this flow for the thickness of the layer equal
to the velocity V. and the induced drag is equal to the kinetic energy in the same layer divided
by V. The problem is therefore to find such a two-dimensional flow produced by impulsive
pressure over the longitudinal projection of the wings ss possesses a given magnitude of the
vertical momentumm, and the kinetic energy of which is a minimum.

It is sufficient for elementary questions to consider only ayrangements of wing symmaetrical
with respect to a vertical longitudinal plane, giving moereover horizontal lines in the longitudinal

.projections. The results are valid for all conditions (reference 1). It is then easy to find the
solution. The momentum of several Hows superposed on each
other is the sum of their single momenta. The flow is of the de-
sired kind if thesuperposition of sny other low with theresultant
vertical momentuin zero increases the kinetic energy of the flow.

The velocity of the superposed flow can be assumed tobe |4
amall, for instance, so that its own kinetic energy, containing the £ a"\

- siquare of the velocity, can be neglected. The impulsive pressure .?L\ ape

-along the projection of the wings nacessary to create the super- || S0° \ Divection of wind
"posed flow acts along a path determined by the magnitude of the | 4
downwash at the same points. The increase of kinetic energy i1s “Tg}@;{i,t hhhhh w
; T s
3 Su'dede Frg, 4.—Disgram showing the creation of the
induoced drag,

where /& di=0.

It iz readily seen that the first expression can be identically zero for any distribution of the
potential & restricted by the second comdition only if the downwash «’ is constant over the
entire projection of the wings. Only then a transfer of a portion of lift from one point to another
with smaller downwash is impossible, whereas this proceeding in all other cases would lead to a
diminution of the induced drag. It is thus demonstrated:

The induced drag is & minimum, if the transverse two-dimensional flow has & constant
vertical component of velocity along the entire projection of the wings.

For wings without stagger it follows then that the induced angle of attack w'/V is
constant over all wings.

The magnitude of the minimum induced drag of a system of wings is easily found from the
apparent mass p & of their longitudinal projection in the two-dimensional iransverse flow.
For the vertical momentum equal to the lift is ¥V p &=L where u is the constant downwash
of tha final flow. This gives

2
i VoK
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The induced drag is equal to the kinetic energy divided by V
Di—w G K
It follows therefore that the minimum induced drag is

L2

D R ———_——a]
‘ VK (38)

and the constant or at least average induced angle of attack is
o u' L
==
v 4V K

(37)

K is a constant area determined by the longitudinal projection of the wings. It is the area of
the air in the two-dimensionel flow having a mass equal to the apparent mass of the proj ectlon
of the wings, |

The results {36) and (37) show that the minimum induced drag can be obtained from the
consideration that the lift is produced by constantly accelerating a certain mass of air downward
from the state of rest. The apparent mass accelerated downward is at best aqual to the apparent
mass of the longitudinal projection of the airplane in a layer of air passed by the airplanas in the
unit of time,

In practical applications the actual induced drag can be supposed to be equal to the mini-
mum induced drag, and the average induced angle of attack equal to (37). It is, of course,
slightly different, but the difference is not great as can be expected since no function changes
its value much in the neighborhood of its minimum.

I proceed now to the application of the general theory of induction to the case of the mono-
plane without dihedral angle, giving in longitudinal projection a straight line of ths length 5.
Consider first the distribution of lift for the minimum induced drag. It i characterized by the
transverse potential flow with constant vertical velocity component along this straight line.
This flow has repeatedly occurred in the earlier parts of this paper. For the length 2 of the line,
it is the ftransverse flow given by equation (2) or by equation {4) and n=Z. The potential

function for the length & is :
. —
F=4, @[%?-\/(%’) —1] (38)

giving the constant vertical velocity component along the line
W= Al %

The density of the lift per unit length of the span is squal to the potential difference of the final
flow on both sides of the line, multiplied by V.

dL =2 VoA ‘/1 (‘@’” —2 A, Vp sin ar’;—%s—‘” (30)

where cos 6=%o Plotted against the span, the density of lift per unit length of the span is

represented by half an ellipse, the multiple of sin & being plobtea against ¢os 8. Thelift there-
fore is said to be elliptically distributed,

e -
.L-IT“-Ia ma.‘/:-(b—) dom vm«-g
b "

£
A= vf.a




ELEMENTS 0F WING BECTION THECRY AND WING THEORY,

The apparent mass of the line with the length & according to equation (8) is equal to
pE=8%0
Hence, with this distribution of lift, the minimum induced drag is, according to equation {36)

L? (40)

D‘=_B'
27 P,
[ % X

and the constant induced angle of attack according to equation (37) is
L 45}
Ve % g

The density of lift (39) per unit length of the span together with the chord ¢, different in general
along the span, and with equation {22) determines the effective angle of attack at each point,
including the apparent mean angle of attack of the section. Namely, from equation (39),

dL
_density of ift  dr 2L sind

2r chord Vzg ZneV: B bt eV G

(42)

€

The geometric angle of attack is greater by the constant induced angle of attack, and hence

2Lgins L '
g = o p=“5(1 +Qb:?n s) (43)
brzc["'z @ b’flng

Equation (40) indicates the importance of a sufficiently large span in order to obtain a small
induced drag.

Any distribution of lif % over the span other than the elliptical distzibution is less simple

to investigate, as then the induced downwash is variable. The distribution of lift gives directly

the distribution of the potential difference along the two-dimensional wing projection,

dr

dr
- 44
A= , (14)
The transverse two-dimensional flow can now be obtained by superposition of types of flow
given by equation (4) with z-='?-x, as now the length of the linte is not 2 but ». The condition

that the superposition of such flows gives the required potential difference, viz,

aL
%A¢=;J,ITT;=AI sin §4+.4, sin 28+ - - - +.4, sin nd+ (45)

Henee, the distribution of the density of lift, divided by £ Vp is to be expanded into a Fourier's
series. The induced angle of attack results then, aceording to equation (15),

1 . . .
o= pyriy (diosin 8424, 8in 26+ - - 4+ Ay sinnd+, - - -) (46)
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and the entire induced drag, being the integral of the product of the induced angle of attack
and the density of lift with respect to the element of the span is

+r
Df“f W idrmp§ AS4RAZ . mAf ) @)
-t

2

As mentioned before, the induced drag for any reasonable distribution of lift agrees prac-
tically with the minimum induced drag, given by equation (40). 4, is the main coefficient and
all other A’s are then small when compared with it. It is, therefore, exact enough for practical
problems to apply equation (40) indiscriminately, whether the distribution of lift is exactly
elliptical or only within a certain approximation. In the same way, equation (41} for the
constant induced angle of attack can be used generally for the average induced angle of attack.

9. In practice the reversed problem is more often met with. Not the distribution of the
lift but the shape of the wing is known, viz, the magnitude of its chord and the angle of attack
at each point. The air forees are to be determined.

The solution of this problem in full generality is barred by great mathamatical difficulties.
There is, however, one particular plan view of the wing which can be treated comparatively
simply and which gives very interesting results. That is the elliplical wing; that is, a wing
with such & plan view that the chord plotted against the span is represented by half an ellipse.

A possible way to investigate a wing with a given plan view would be to look for particular
distributions of the angle of attack such that the sclution for them can be found. It weuld
be particularly easy to use such special solutions for the solution of the general problem, if it
is possible to determine those particular special solutions, for which the indueced angle of attack
is proportional to the effective angle of attack and hence to the geometric angle of attack, too.
These functions found, the distribution of the angle of attack arbitrarily given has to be
expanded as a series of such functions, that is, as a sum of them. It is then easy to find from
this series the induced angle of attack or the effective angle of attack, as this can be done for
each term separately by the mere multiplication with a certain constant. Hence, a new series
for the effective angle of attack is readily obtained from the series of geometric anglés of attack.

Thst sounds simple, but it is extremely difficult to find such distributions of the angle
of attack of a given plan view. It suggests itself, therefors, to try the other way and to begin
with simple distributions of the angle of attack and to try to find a plan view which can be
conveniently investigated by means of them. The only distributions discussed in this paper
are those represented by the flows equation (4). It suggests itself to begin by considering their
induced angle of attack and effective angle of attack. For one special term, as follows from
equations (42), (45}, and (40), the effective angle of attack is

=2Aﬂ sin 78

T eV (48)
and the induced angle of attack is
n A, sinnd
=" F Vs @9

It is at once seen that these two angles become proportional to each other if the chord ¢
becomes proportionsl to sin 5. For sircles and ellipses

¢= —S? sin , (50)
b

and therefore this is taken as applying to other shapes also. Hence,
A, gin ne
Vbhsing i—?

S, =
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where 8 denotes the entire area of the wing. The ratio of the two angles of attack becomes then

%’g%ﬁ (51)
This plan view is called elliptical.
With an ellipticsl wing, all equations found for any monoplane become particularly simple.
Equation (43) can be written

oy =, (1 +%§- (52)

The geometric angle of attack follows from equations (48) and (49) for the efiective and induced
angles of attack, vahid for a special #, by taking thesum of all such expressions. The condition
for the coefficient A4, if the geomemc angle of attack a, is given, is therefore

2vVs

—5— 4 sind=A4, s1n6(1+bg)+ﬂ sm,@ﬁ(H— )+ + A4, smna(l+ % )+ .+ (83)

That is, 2F a, sin é % is to be sxpanded into a Fourier's series

2V a, sin t‘;%m‘j’1 sin é+ B, sin 2+ B, sin #é+ - - - (54)
and the coefficients A, are then
4B
= 2n& (55)
T+

The distribution of the lift follows then from equation (44}

AL 2Vs (4 sino+ 4, sin 854 - - - +Aysin i) (56)

and the distribution of the induced angle of attack is given by equation (46), The entire
induced drag is given by equation (47).
The entire lft s | 7" 52

—lz d.’ﬂ
formula (11}, since de= —sin é d 3. Hence, the entire Lift is

+o12
L=2Vp ;ilf sin b o

or, transformed by introducing o,, and using (54) and (55)

p 1 512 )
L=¥:= '"TS 2 Gy © dx {57}
1 +F- w
=b/2

That is to say, the entire lift of an elliptic wing can be obtained by supposing the effective
angle of attack equal to the geometric angle of attack divided by (I + bg) Otherwise expressed

the aerodynamic induction reduces the entire lift of the elliptical wing in the ratio

H

28
I+ W

however the wing may be twisted.

dr and only the first term of series (56) contributes to it in view of -
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This is not so plausible as it sounds. The distribution of the lift iteelf is by no mesns
obtained by & mere diminution of the angle of attack in & constant ratio; only the entire lift
can be computed that way. Nor does this theorem hold true for any other plan view but the
elliptical. It may, however, be applied to shapes approximately ellipticsl so as to gain approxi-
mate results,

The rolling moment of thelift can be found by means of quite an analogous theorem. Only
the second term in (56) gives a coniribution to the rolling moment in view of formula (11).
This is therefore as a consequence of formulas {56), (55), (54), and (50},

+Bi2
Ve 7 2
;T ceoxde {568)
A T A

Henece, the entire rolling moment is obtained by taking as the effective angle of attack, the

geometric angle of attack times

4 5~ The 1nduct10n decreases the rolling moment m the
rat.io 48 This is of interest for the computation of the effect of a displacement of ailerons.

It wﬂl be noticed that this factor of decreass is g different one for the entire hft and for the
entire rolling moment. The induced angle of attack is not proportional to the geometrie angle
of attack except when all factors but 4, are zero. This is the case in the main case n =1 where
the constant angle of attack is decreased by a constant induced angle of attack, as we have
seen before.

Equation (58) may also be applied approximately to shapes differing from elliptical plan
forms. The error involved in this proceeding is probably grester in general than for the deter-
mination of the entire lift, as the rolling moment is more influenced by the ends of the wing
and there the deviation from the elliptical shape will be particulerly pronounced.

10. The biplane, represented by two parallel lines in the longitudinal projection, gives
rise to the same considerations as for the monoplane. The appsrent mass of the pair of lines
is always greater than that of one line. Therefore, the minmmum induced drag of a biplane
is always smaller than the induced drag of a monoplane of the same span under the same con-
ditions. It is
I

D=4E v (59)

It is equal to that of & monoplane of equal area and of greater span. The span of the mono-

plane with the same induced drag as the biplane has to be #b where k’—ﬁ- The magnitude

&
of K is given in Table 11,

1 have discussed the subject at full length in my paper on the biplane (reference 4). This
paper conbains also the discussion of the influence of the induction on the stability of staggered
biplanes. It can easily be seen that the induced angle of attack of a staggered biplane is greater
at the rear wing, this wing being in a layer of sir having received more than 50 per cent of the
impulse, whereas the front wing is in & layer having received less than that. Hence, the center
of pressure is moved toward the front wing.

A theory of a particularly shaped biplane when the angle of attack isgiven, in analogy to the
theory of the elliptical wing as given by me in the last section is not yet written. Even less
is written on triplanes and other multiplanes. The number of variables to be considered and
the general mathematical difficulties increase with the number of wings, and at the saame time



the results become less important as they are more seldom used. This refers to the exact
numerical information. The general physical problem is as easily understood as with the

monoplane,
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TABLE 1.
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REMARKS ON THE PRESSURE DISTRIBUTION OVER THE SURFACE OF AN
ELLIPSOID, MOVING TRANSLATIONALLY THROUGH A PERFECT FLUID.

By Max M. Munk,.
Summary

This note, prepared for the National Advisory Committee for
Aeronautics, contains a discussion of the pressure distribution
over ellipsoids when in translatory motion through a perfect fluid.
An easy and convenient way to determine the magnitude of the veloc-
ity and of the pressure at each point of the surface of an ellip-
soid of rotation is described,

‘The knowledge of such pressure distribution is of great prac-
tical value for the airship designer. The pressure distribution
over the nose of an airship hull is known to be in such good agree-
ment with the theoretical distribution as to permit basing the com-
putation of the nose stiffening structure on the theoretical dis-

tribution of pressure.
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Experiments have shown that the knowledge of the pressure
disbribution over the surface of ellipsoids, moving translationally
through a perfect fluid, is often of considerable practical inter-
est. This pressure distribution is of a simple description; it
can easily and quickly be determined by analytical methods. To
.the hest of my knowledge this has never been brought out clearly
in any publication, The mathematical theory of the flow created
by an ellipsoid is given by H. Lamb in his "Treatise on Hydrédy—
namics," Chapter V, It requires considerable mathematical train-
ing to grasp the full meaning of the results as given by Lamb.

E. G. Gallop (Ref, 3) has given some comments on the nature of the
resulting distribution of the velocity and pressure, for the spec-
ial case of an ellipsoid of revolution, A part of this holds true
for all ellipsoids, including those with three different principal
axes, Mr. Gallop does not, however, for the special case of sphe-
roids make the distribution of the pressure sufficiently plain for
immediate computation or for the practical application of this
interesting analysis.

The knowledge of one simple lemma on the potential flow around
ellipsoids, implicitly contained in Lamb's result (Third Edition,
Equation (114 (8) ), ) is sufficient for the deduction of all the
following theorems and for the determination of the pressure dis-
tribution. This lemma is;

If an ellipsoid is moving with uniform velocity parallel to

one of its principal axes, say parallel to the x-axis, the velocity
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potential at any point of the surface can be written in the form

o = A'X (1)
where A' 1is constant for a given flow and a given ellipsoid.
This theorem is the key to all the relations referring to the dis-
tribution of velocity and of pressure.

If the veloecity of flow is not parallel to a principal axis,
but has components in the direction of each of them, the resulting
flow 1is the superposition of three flows analogous to the one just
considered. Hence, at all pcoints of the surrface, the potential is
a linear function of the Cartesian coordinates =x, vy, and =z
again, and can be written in the form

¢ = A'X + B'y + C'z - (2)
where the coordinate axes are chosen to coincide with the axes of
the ellipsoid. Hence the curves of equal potential ¢ are
situated on parallel plahes,

Now, suppose first the ellipsoid to be at rest and the fluid
to be moving relative to it, as in a wind tunnel or as with an
airship moored in a gale. The change from the ellipsoid moving
through the fluid otherwise at rest to the fluid passing by the
stationary ellipsoid does not affect the validity of BEgquation (2)
except giving the constants A', B', and C' other values, say
A", B", and C". In the latter case (the bhody at rest) the
velocity of the fluid at all points of the surface is parallel to

the surface. Consider first the elements of surface containing a
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line element at right angles to the planes of constant potential,
i,e. at the points of the ellipsoid where the plane
A'X + B"y + C"z = 0 meets the surface. It is apparent from (2)
that at all these points the velocity has the components A", B",
and C'. This is evidently the maximum velocity.

At all other points of the ellipsoid the elements of surface
are inclined towards the direction of maximum velocity, say by the
angle . Then the elements of distance on the surface, As,

between curves of equal potential are increased in the ratio

1

pvey-gont when compared with the actual distances between the planes

of equal potential. Accordingly, the velocity, being equal to
2. is decreased inversely, its magnitude is A" cos . It will
be noted in particular that the velocity is equal at surface
elements which are inclined by the same angle e. It is equal to
the projection of the maximum velocity at right angles to the
surface element. Hence the veloecity cannot exceed the one rightly
denoted by 'maximum velocity,” having the compomnents A", B'",
and C'. |
Returning to the case when the direction of flow is parallel
to a principal axis, it can be shown that the maximum velocity A"
stands in a very simple relation to the kinetic énergy of the flow,
and hence to the apparent additional mass of the ellipsoid. We |
have now to suppose the fluid to be at rest and the ellipsoid to

move, say with the velocity U, parallel to a principal axis,
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e.g., the x-axis. The kinetic energy of the flow set up is equal
to - % pj'¢ %%'ds, i.e,, the volume of fluid displaced by an
element of the surface per unit of time, multiplied by the poten-
tial at the point of displacement and by % where p denotes the
density of the fluid. Now, the volume displaced by a surface ele-
ment per unit time is equal to the projection of this element
perpendicular to the direction of x, multiplied by the velocity

U. The potential being A'X the integrand becomes A' Ux g dy d=z.

2
,fxdy dz 1is the volume of the ellipsoid, hence the integral gives
Volume A'U %‘ This is the kinetic energy, usually expressed by
Volume k; U2%, where k; denotes the factor of apparent mass.

It follows that

=

=k1‘

7

A", referring to the case when the ellipsoid is stationary, is
connected with A" by the equation

A" = A' + U;
as the latter flow results from the former by the superposition of
the constant velocity U. Hence it appears that

&
U

A 1is the maximum velocity corresponding to a flow having unit
velocity along the x-axis. It is a constant for a given ellipsoid.
It equals the sum of 1 and of the factor of apparent mass

ky as is confirmed for two special cases, where the factor A

is well known. With a sphere, the maximum velocity is 1.5 times
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the velocity of flow, and the additional apparent mass is one-half
the mass of the displaced fluid. With a circular cylinder, moving
at right angles to its axis, the maximum velocity is twice the
velocity of fiow, and the apparent additional mass is equal to the
mass of the displaced fluid.

A" B"

The ratios A = T B = v C = W are independent of the

velocities U,V, and W and hence only depend on the ratio of the

Cl’f

three semi-axes of the ellipsoid a, b, and ¢, Lamb gives the
method to compute them., Compute first the integral

= dx
g = abce
J; 'V(a2 + x) (a2 + x)(b?2 + x)(c? + x)

and the analogous integrals g and vy for the axes b and c. The

factors of apparent mass are then

k1 = 52—, etc.

There are no tables for A, B, C, or for k;, ks, ks, pub-
lished yet. The integrals for o etc., can be numerically evalu-
ated in each case, and I will assume at present that A,B, and C,
are therefore known. For the special case b = c¢, that is, for
ellipsoids of revolution, k; and k, have been computed for a ser-
ies of elongation ratios, and are reprinted in a small table in
Ref. 3. They are connected by the relation k; = l~%—%§ . The
determination of the velocity at any point is thus reduced to a

simple geometric problem. The maximum velocity, whose components

are AU, BV, and CW, has tb be projected onto the plane tangent
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to the ellipsoid at the point considered, i.e. it has to be multi-
plied by the cosine of the angle hetween the normals to the sur-
face at this point and at the point where the velocity is a max-
mum,

In the most interesting case of an ellipsoid of revolution,
this can be done analytically in a very convenient way. The for-
mula is most easily arrived at by the application of element#ry
vector analysis, TFirst compute the component of the maximum'veloc—
ity in a direction normal to the surface at a given point. The
longitudinal component of the maximum veleocity is AU, and the
lateral component of the maximal velocity is - BV,

Let the angle between the normal and the longitudinal axis be
n, and let the dihedral angle between the plane containing this
axis and the line of velocity of flow and the plane containing the
axis and the point in question be A, Then cos n is the longi-
tudinal component and sin n cos B the lateral component of the
normal of unit length. Hence the componeni of the maximum velocity
in a direction perpendicular to the element of surface is

Vo, = (1l + kj) Uecosn + (1 + ky) V sin n cos B,
Let V; denote the component parallel to the surface element,
Then

Vit + Vo = Viog

Vi =V Vhax - Vo2

- V(141 ) 202 4(14k,)2 V2 [ 1+K1 )U cosn +(1+k,)V sinn cosp)?

and hence
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This is the desired formula for the velocity of flow along

~ the surface. The pressure is computed directly from the velocity
at the points of the ellipsoid, now supposed to be stationary in
the flowing fluid. For this is a steady flow and hence
Bernouilli's equation for the pressure holds true, viz.:

p + % p V12 = const. That is, the pressure is equal to an
arbitrary constant pressure minus V;? %, where V; denotes the
velocity. The points of greatest velocity are those of smallest
pressure or of greatest section. The curves of equal velocity
are also the curves of equal pressure,

In practice, we are chiefly interested in rather elongated
ellipsoids of rotation, and the angle a between the principal
axis and the direction of motion is small., With very elongated
ellipsoids, Xk; is about 1 and k, is very small. Hence A 1is
about 2 and B is about 1, and the angle between the direction
cf the line of maximum veleocity and the axis is about twice as
large as the angle between the direction of motion and the axis.
The maximum velocity is always greater than the velocity of motion,.
The difference between the largest negative pressure and the pre-

sure in the undisturbed atmosphere is

V2[% (1L + k1)2 cos? a + (1 + ky)? sin? o - 1}

159



160



REPORT No. 164.

THE INERTIA COEFFICIENTS OF AN AIRSHIP IN A FRICTIONLESS FLUID.
By H. BATEMAN,

SUMMARY.

The following investigation of the apparent inertia of an airship hull was made at the
request of the National Advisory Committee for Aeronautics, The exact solution of the aero-
dynamtical problem has been studied for hulls of various shapes and special attention has been
given to the case of an ellipsoidal hull. In order that the results for this last case may be
readily adapted to other cases, they are expressed in terms of the area and pevimeter of the
largest cross section perpendicular to the direction of motion by means of a formula involving
a coefficient K which varies only slowly when the shape of the hull is changed, being 0.657
for & circular or elliptic disk, 0.4 for a sphere, and about 0.25 for & spheroid of fineness ratio 7,
For rough purposes it is sufficient to employ the coefficients, originally found for ellipsoids, for
hulls otherwise shaped. Whent more exact values of the inertia are needed, estimates may be
based on a study of the way in which K varies with different characteristics and for such &
study the new coeflicient possesses some advantages over one which is defined with referencs to
the volume of fluid displaced.

The case of rotation of an airghip hull has been investigated also and a coefficient has

been defined with the same advantages-as the corresponding coefficient for rectilinear motion.

L INTRODUCTION,

It follows from Green’s analysis that when an ellipsoidal body moves in an infinite incom-
pressible inviscid flnid in such a way that the flow is everywhere of the irrotational, continuous
Eulerian type, the kinetic energy of the fluid produces an apparent increase in the mass and
moments of inertia of the body. The terms mass and moment of inertia are used here in a
generalized sense because it appears that the apparent mass is generally different for- different
directions of motion and the apparent moment of inertia different for different axes of spins
For this reason it seems better to speak of inertia coeflicients, these being the constant coefli-
cients in the expression for the kinetic energy in terms of the component linear and angular
‘velocities relative to axes fixed in the body.

The idea of inertia coefficients may be extended to bodies of any shape and to cases in
which there is more than one body or in which the fluid is limited by a boundary. Generalized
coefficients may be defined, too, for cases in which there is circulation round some of the bodies
or boundaries and values ¢an eventually be obtained which should correspond closely to the
valués of the inertia coefficients for the motion of a body in a viscous fluid.

The inertia coefficients of airship ‘hulls are useful for the interpretation of running tests
and in fact for & dynamical study of any type of motion of an airship, whether steady or unsteady.
The coefficients are needed, for instance, in the study of the stability of an airship by the method
of small oscillations ! and for a computation of the resulting momenta in various types of steady
motion.

For the case of motion of translation with velecity U the kinetic energy, T, of the fluid
is usually expressed in the form

T=3m?
where m is the mass of the fluid displaced by the body and % is a numerical coefficient whose
value is known in certain cases. A value of % for an airship hull is generally found by choos-

1 Far the Literature on this subject yeference may be made to 8 paper by R. Yones and P. H. Williams, British Aeronautical Research Com-
mittes, . M. 751, June, 1921.
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ing an ellipsoid with nearly the same form as the hull and calculating the value of % for the
ellipsoid. This method is to some extent unsatisfactory because the coefficient k varies con-

-giderably with the shape, being infinite for a c¢ircular disk, 0.5 for a sphere, and 0.046 for a

prolate spheroid of fineness ratio 6. For this reason an alternative method is proposed in which
the kinetic energy of the fluid is expréssed in terms of quantities relating to the master cection
of the hull by means of a formula involving a numerical coeflicient K which varies only slowly
with other characteristics such as the fineness ratio. The proposed expression is
=

where & denotes the arvea and I the perimeter of the greatest cross section of the hull by a plane
perpendleular to the direction of motion; p is the dehsity of the fluid and K the new coefficient
which is apparently greatest for 4 circular or elliptic disk.

In the case of a spheroid moving in the direction of its axis of symmetry the way in which
k and K vary with the fineness ratio is shown in Figure 1. In Figure 2 the corresponding curves
have been drawn for a hull bounded by portions of two spheres cutting each other orthogenally.
The high value of K when the two spheres are equal is undoubtedly caused by the presence of-
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Fig. i 2 Fig.& S

the narrow waist, while the sudden drop in value indicates the effect of a lack of fore and aft
symmetry. The curves for K have an advantage over those for % in indicating more clearly the
effect of a change in shape. The effect of a flattening of the nose of the hull has been studied
by considering the case of a surface of revolution whose meridian curve is a limacon, The effect
is only slight, as is seen from the tablein Section IV. In the case of an airship hull spinning about
a central axis in a plane of symmetry the kinetic energy can also be expressed in terms of general
characteristics by using a formuls involving a coefficient K, which varies only slowly with
the shape. The proposed formuls is
—_ z
T=2—: KR, (85 ES,J o

where wy is the angular velocity about the axis of spin, which we take as the axis of 2, &, is the
maximum radius of gyration of a meridian section about the axis of 2, §; and S, are the areas of
centiral sections perpendicular to the axes of y and 2 and I is the perimeter of the meridian section
with the greatest perimeter, a meridian section being cut out by a plane through the axis of spin.

This formula has been constructed from the known formula for an ellipsoid with the axes
of coordinates as principal axes. To adapt it to a hull of a different shape a suitable set of axes
must be chosen. The principal axes of inertia at the center of gravity may, perhaps, be used
with advantage. :
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- The coefficients ¥, K and K’ will now be computed in some cases in whith the serodynamical

problem is soluble. In particular they will be computed for the following cases:

(1) Disk moving axially. '

(2) Prolate spheroid moving longitudinally.

{3) Prolate spheroid mOﬂng laterally.

(4) Oblate spheroid moving in the direction of its axis of symmetry.

(5) Oblate spheroid moving at right angles to its axis of symmetry.

(6} Solid formed by two orthogonal spheres.

(7) Solid formed by the revolution of a limagon about is axis of symmetry.

1I, THE INERTIA COEFFICIENTS FOR AN ELLIPSOID.

When the viscosity of the fluid is neglected and the motion is treated as irrofational there
is no scale effeet. This means that if we increase the velocity of the body in the ratio 8.1, keoping
its size constant, the velocity at any point of the Auid changes in the same proportion. A
similar remark applies to the ease in which the body is spinning about an axis instead of moving
with & simple motion of translation and in the more general case in which a body has motions
of both translation and rotation the kinetic energy, T, can be expressed in the form?

2T =Aw? + Bv* + (o + 24 vw + 2B+ 2 C'uv + Pp? + Q@ -+ Br* + 2P qr + 2Q'rp + 2R py
+2p (Fu+ o4 Ho) +2¢ (Fu+GF'v+ Hw) +2r (Flu+GF'v+ H' '),

where (v, v, ) are the component velocitics of a point fixed in the body and (p, ¢, ) avo the
angular velocities of the body about axes through this point that are likewise fixed 1 the body.
The coefficients A, B, 0, A', B', ¢*, P, Q, R, P', @', R", F, @, H, I", F" | @', G, H', H'' gro
* congtants which are called the inertig-cogfficients of the body relative to these axes. This expres-
sion for the kinetic snergy has been used also in cases in which the velocities are variable and the
determination of the inertia coeflicients is evidently a matter of some importance,

The inertia coefficients are usually found by writing down the velocity potential or stream-
line function which specifies the flow and caleulating the kinetic energy by means of an integral

of type
de
27= -—pfﬂba;b as

over the suface of the body, ¢ being the velocity potential, p the density of the fluid and dn
denotes an element of the normal to the surface dS drawn into the fluid. A different integral
may be used when the stream-line function is known, but in many cases integration is unneces-
sary, for Munk® has remarked that in the case of a simple velocity of translation the fluid motion
may be supposed to arise from a series of doublets and that the sum of the moments of all these
doublets has a component in the direction of motion which is proportional to the sum of the
- kinetic energy of the fluid and the kinetic energy which the fluid displaced would have if it moved
like a rigid body with the same velocity -as the body. The sum of the masses of the fluid and
the fluid displaced has been called the complete mass.
The inertia-coefficients are well known for the case of an ellipsoid with semiaxes g, b, ¢ when
the axes of reference are the principal axes of the ellipsoid. We have in fact?

B Plre—By)  m
A=y ™ P s P A Gy 5 o

m=%1rpabc,ﬁ’=3'=0’=1”=@’ B=FP=F=F'-@=-¢=¢"-H=H'= H”'“"

where

a ) " i
a°=ﬂ'bcﬁ“‘_;ﬂﬁ’ B, = abc[ FEA T“"a’bcf(czwi)ﬂ’ Am[(@®+1) (B X} (6* + M)

2 Ses Lamb’s hydrodynamics, _ _
3 Technical Nete No, 104, National Advisory Committes for Aeronagdics. July, 1922,

163



164

REPORT WATIONAL ADVISORY COMMITTEE FOR AERONAUTICS,

The complete chetficients of inertia for motion of translation are

2m
A¥ = B¥ = =
2 a,, 3-8’ o* 2y,

The coefficient % defined by the equation
- oy

Q—au

has been tebulated by Professor Lamb in a number of cases.” We have extended his tables
and have also tabulated the coefficient X defined in I. The different special cases of an ellipsoid

will now. be discussed.

1. Elliptic disk—In this case L is infinite but the kinetic energy is finite. To find an
expression for X we write

f abe d (Q-n D (oo C abedh

(@+0A" 2 o @U*(c’ +X)oH

T 20 T @&
f{a=+7~)i(c=+1) v’c’—aﬁ[2 ton™ e - a]_c FrEET

when a is small, Differentiating once with respect to ¢ and n times with respect to ¢*, we get

” ad: (2 +1)
(_Dnnf(asﬂ)*{éﬂ = c"‘"’( D Al s (- 1)"__'*2L111}‘+_)"“
Hence
_2b[, L Lo —b’ ¢ — by zab 1-32—F, 1.3 5 /= B\
[ 2 & 4.02)+ ]_ [”22 +2,,4,(03)+--—-]

E do o al”
=2 [1 —Aabcj%aﬁm +higher powers of a] =2 [1 —m]

spproximately, where I is the perimeter of the ellipzse with semiaxes b and ¢. Hence finally we
obtain

2412
JO LR N
and®
' K= 2_ 0.637
w
The distribution of doublets may be found from the well-known expression for the potential
We have for an ellipsoid

_abexU dh & 3 2
¢" 2_00 ﬁar!‘f'i)ﬁ’ az+)\u+'bz+?\o+cz+lo—l
e

_2be v T & i
wﬁ*(bnmceum*’ WS CE S RS
Putting A =3’ and making —0 we find that the value of ¢ on the disk is

4h Z
oy R

+British Advisery Comaities for Leronnutios; R. & M. No. 623, Octoher (1918),
*Tn the case of an infinitely long strlp bounded by tlwo parallel Lnes (i value of K i5 0.569.

As ¢a—0 we have
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This must be equal to the 2z times the moment per unit area of the doublets in the neighbor-
hood of the point (0, ¥, 2} of the disk. Hence the expression for the potential is equivalent to

2be f _- -7 dyod,"zo
T fa? (y %o ’+ z—2)F

and this formula shows the way in which the potential arises from the doublets. The complete

energy is in this case
S L Lo W U[%"Uff[ —yi~quyadzo

in accordance with Munk’s theorem. To verify this result we put

Yo==D8 COS w, Zy=¢¢ 8il1 @

J[-3-5T anen- bof smf’d‘m%

With the above substitution the expression for the potential may be written in the form

o= f wrlw—sf do,
L]

Rr=g 4 (y —bs cos w) 4 (z—c sin )?

| then

and may be compared with the corresponding expression for the oblate spheroid. For the case
of the circular disk (b=¢) the stream-line function may be obtained by replacing x in the above
formula by — (#*-+2%). When an elliptic disk spins about the axis of y the kinetic energy is
given by

4 . (1 4 cos? 8)de
2T =15 w2, + ﬁc’ cOs*® 8 + b sin? f)¥

where {2, is the angular velocity. In the case of a circular disk the kinetic energy is

'

45 Pe
The coefficient A! thus has the value

K'-% =0.318.

2. Prolate spheroid.—In the case of a prolate spheroid moving in the direction of its axis of
symmetry, we have (Lamb, loc, cit.)

2_(19_){ lte_
2 l—e

where ¢ is the eccentricity of the meridian section and so

b=e=a+l—¢

6 _ab* Uz dh
ST — | (LSS (LY

22 +2&
P Nl S wl

The velocity potential is

where
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By introducing the sphercidsl coordinates
eg=h ul, y=w cos w, z=a gin w, a=h (I —p )P =1} h=qe
we may write this in the form

de=A4 P, @00 =A ufg logtE] 1]
where

1 14+
A[I-;—e'"—' lo --—--}—a (1A

The velocity potential may also be expressed as & definite integral

+1
1 sds
"*=§‘”‘f [E=he) o2 +22F

which indicates the way in which it may be imagined to arize from a row of sources and sinks
on the line joining the foci. This result may be obtained by writing

1 0 1 (T flds
{ ¢ log .25 1}_§h£lm——hs)’+y’+z“]*

. and determining f(s) from the integral equation

_1 J(s)ds
Q'@_zh_[ (P

which is obtained by putting y=2z=0. The integral equation is solved mest conveniently by -
using the well-known expansion

=D ) @kl Pad @l
and the integral formula ’

P, ()P 9
_L n(®Pals}ds= ”
nt L

fie) =P, (s} =s.

The strength of the source associated with an elemnent Ads is

mEn
=n

.M‘.

It is thus evident that

; Ah. sdd. 4=p

Multiplying this by Uz= Uhs and integrating with regard to s between —1 and 1, we get
dw A?&’ _dmp “ahrl?

RN W
1= 2781
The kinetic energy of the fiuid plus the kinetic energy of the fluid displaced is, on the other
hand .
wp 1 oy
T“"z' 3 U’[I +§‘:a:]
and

_2(1—-¢% 1 +e
2—ao==— e’"— T4 e= 2e g e
Thus Munk’s theorem is again confirmed.
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In the case of a prolate spheroid moving broadside on we have
1 1-é&, 14¢
b= g BT
and the relation between K and kis 0
" Zra
where ? ig the perimater of the meridian section. The potential ¢, may be expressed in the
forms '

yit

ey [ an
Ay R CESVIUESVS

where
2
L+M=1
@+r B4
= A1 =p2)¥ (2 1)} {% logg—i—izil}cos ar
whare

1, 1+¢ el—26)|_ .
4] 3 10g {12 | ay

+
1 {(1-8ds
dp= 9 Ayhfl [(x_hs}2+y2+zz];

At Doctor Munk’'s suggestion one may interpret these results with the aid of the idea of
complete momentum, i. e., the momentum of the fluid plus the, momentum which the fluid
displaced by the body would have if it moved like a rigid body with the same velocity as the
body.

Let M, and M, denote the complete masses for motions parallel to the axes of = and y
reapectively, then

M,:ﬂ% rpade (1+£.) My= g apabde (1+4y)

q>=-3M°U H ads
L _'l[(:v—?w)**i-v”ﬂ*@]*

3M, Vy {(1—a% ds
@“=1&-1:f@—hp+w+ﬂ%

and we may write

These equations show that when.the ¢omplete momentum is given the velocity potential ¢
and the sources from which it arises are the same for a series of confocal spheroids.® This is
true for any angle of attack as is seen by superposition. This resalt is easily extended to the
ellipsoid, for we may write

=g M, Ui,

© i
[‘=f——~—»——(a,+7\) ﬁ’_
M

T 2 __
d T, TE,

& This Iz an oxtension to thres dimensions of a theorem that has been proved for the elllpte cylinder. Cf. Max. M. Muak, Note oo Asto-
dynamic Foress, Te‘chnical Mote No. 104, National advisory Commilttes for Asronsaties.

where
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It is easily seen that I is the same for a system of confocal ellipsoids. This result may be
used to find an appropriate system of singularities distributed over the region bounded by a
real confocal ellipse, the result is the same as that already found for the elliptic disk.”

It is well known that an ellipsoid has three focal conics, one of which is imaginary, end the
guestion arises whether there 1s more than one simple distribution of singularities which will
produce the potential. This question will be discussed in Seetion IIL

When a prolate spheroid is spinning with angular velocity 2, about the axis of ¥, the
veloeity potential & is given by the formulse

-+
3 $+1 1 .1 g (1—s% ds
‘P=A,u (1_’_‘2)} (3'2_])4 5 e lOg g—,:-i‘-3—§,3—-_1} Sin w= -3 Azfl [(x—hs )3+y3+23]i

where A is & constant to be determined by means of the boundary condition
82 _ o (._k
TEANG

3 1+¢ 8 €
A[ﬁ'&"’ (2—63) lOg m—a—mj]-dsﬂmy

The energy may be expressed in terms of the mass of the fluid displaced by means of the
formula

It is easily seen that

)
2T—kim (%*‘5"—') @,

(the coefficient %! having been tabulated by Lamb) or it may be expresied in terms of other
eharaeteristics with the sid of our coefficient K'. The values of the various coefficients & and
K are given in Table I. The suffixes ¢ and ¢ are used to indicate the axis along which the
spheriod is moving. The coefficients k* and E* refer to the case of rotation. It will be seen
that the coefficients X vary only slowly and the same remark applies to the product (7 +%,)
{{ +%o). One advantage in using the coefficients K and K, is that it is not necessary to compute
the volume of the hull of the airship. Since K, varies very slowly indéed when the fineness
ratio afc iz in the neighborhood of 6, it follows that if we take H.=0.6 for an airship hull we shall

not be far wrong. T .
’ ABLE L.

1+h) | ' +
b b o 4 R, 1 E K

0 0 2 0 g 0 B 13 0 b e b
Bagossssgggesre |l

semmseoe!
§§§E§E§

=8

In this table use has been made of the coefficients computed by Lawmb. It should be
noticed that K, +2 K, is very nearly constant for velues of %_ lying between I and 6. This faot

may be used to compute K. when K, is known using s formula such as

K,="743 -% K,

The value thus found is too large for large velues of% aad too small for_ small values of %-

70t Lamb*s Hydrodynamiey, 34 ed., ch. V, p. 145,
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3. Oblate spﬁermd —1In the case of an oblate sphermd moving with velocity U in the
direction of its axis of symmetry, which we take as axis of x, we have

_2[_Ai=e .
a.,—e,[l— p s ’e]

where ¢ iz the sccentricity of the meridian section. In this case

db=e¢, a=cy1—¢.
The velocity potential is
¢ _acUs dr
T 2—a Mﬁ"+7'~)’(c’+>\)
where
@+
s =l

Introducing the spheroidal coordinates

r=tut, y=w 08w, z=w 80 W, w=h (1 — 3! 2+ D)}, h=ce,
we may write
da=Ap {17 cot™1f)

A‘ﬁh/(:2 — ¢os! {Z’= iy L3I

=—fs41 2 dsf

. R*={y—hs cos w)?+ (z~— he sin w)? 422,

where

We also have

When an oblate spheroid moves with velocity W at right angles to its axis of symmehry
we have

Bo="Yo= 1/19: ¢ [sin~ ¢ — e 1— ¢
and the relation between %, and K, is now

ko

K= T 24"

The velocity potential 4, is given by the formulw

et Pz ar
P2 | @@

= A~ @D [y

Y P L
=-§-;f28-\f1~—-83 d&f Sz(p)
[ o

RBr=(y—he cos w)?+ (z—hs sin w)t -+ 22, h=ce= ' —a?

- cot—ig'} sin w

X a+2c’

4 eos VETG| =B W.
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Some values of the coefficients %, ko, K., K,, are given in Table IL

TABLE II.

_: Fa K ke s (1+ka) (Lo}
1,00 0.500 0, 500 0. 500 0. 500 2,950
1.50 0.621 0.523 0, 582 0. 4804 2,940
200 0.702 0,541 0,310 0.477 2,209
2,09 0,803 0. 571 228 0.473 2905
3.89 0. 86 9.587 0,174 0. 474 2.184
5.1 0. 885 0. 508 045 0497 % 166
6. 01 0.918 1. 600G Q, 1205 0. 478 &1
o 1,000 0. 637 0. 000 (Y 2000

When an oblate spheroid spihs with angular velocity wy about the axis of ¥ the velocity
potential ¢ iz given by the formule

o
== Oz J;cz V@ TOA

= (¢t —a*)*abew,
2(@—a?) + (@ +6°) (vo— o)

= dp Q- @+ DAfag cot-tp — 3+ A )

¢+a —1E_EE+G’3 P
.:‘1{3(:2 i L & Ji—a a] Ry,

2
. 4 9* 71
¢’=—§r£3 (1—32)"‘&31 570\ & dw

III. THE METHOD BASED ON THE USE OF SOURCES AND SINKS.

We also have

It was shown by Stokes * that the velocity potential for the irrotational motion of an
incompressible nonviscous fluid in the space outside a sphere of radius, o, moving with veloeity
U, is the same as that of a doublet of moment 2= Ua?® situated at the center of the sphere. This
result has been generalized by Rankine,* ID. W. Ta.ylor 1 Fyhrmanno,* Munk,? and others, two
sources of opposite signs at a finite distance apart giving stream ].mes sha,ped like an airship.

Munk has shown in a recent report that the intensity of the point source near one end of
an airship hull may he taken to be #*r I/, where r is the radius of the greatest section of the
ship and %~ the distance of the point source from the head of the ship. The total energy of
the fluid displaced is then

7= %map 7

and the apparent increment of mass of the airship is equivalent to about 2} per cent of the
mass of fluid displaced.

In this investigation the airship is treated as symmsetrical fore and aft, the two sources
of opposite signs being squidistant from the two ends and the contributions of the two sources
to the Kkinetic energy being equal. The final result is identical with that for an elongated
spheroid with a ratio of axes equal to 9.

¢ Cambr, Phil Trans., vol. 8 (1843). [Math. snd Phys. Pepers, Vol, I p. 17.]
+ Phi}, Trans. London (1871}, p. 267.

© Trans. British Inst. Naval Architects, vol., 35 (18¢4), p. 355

1 Tahrb, dar Motocluftsch!f-Stndlengesellechatt, 1911-12.

1 Nutional Advisory C ittee for Aer tics, Raports 114 and 117 {1921},
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It is thought that a lack of fore and aft symmetry will still further reduce the values of the

coefficients & and K. To get an idea of the effect of a lack of symmetry we shall consider the

-case of a solid bounded by portions of two orthogonal spheres.. In this case, as is well known,
the velocity potential may be derived from three eollinear sources. We may in fact write

¥
¢=%aﬁ U Fﬂ.i_%ars U %_% P U 9?%9
1 amB 1 am& 1 gin* o
v=5a"U = —~+30* T —3P U =g

where ¢ and @’ are the radii of the two spheres (r, #), (*' ¢}, (R, ©) are polar coordinates re-
ferred to the three sources as poles, the angles heing measured from the line joining the three
sources. If @ is a common point of the two spheres B is measured from the foot of the per-
pendicular from @ on the line of centers, while » and »* are measured from the centers of the two
spheres respectively. The quantity p represents the distance of @ from the line of centers and is
given by the equation

>

B[ -

+

Al

By means of Munk’s theorem we infer that the complete energy is given by the formula

2T=2rp [0 +a"~p%| Ur=p (L+R) VT2
where

'z
[2 (@ +a'?)t +2a>+2a" -3 F _:.Ir: ;:I
is the volume of the fluid displaced.
The fineness ratio, i. &., the ratio of the length to the greatesi breadth, is

4=2 +a' +@a?
- 24

Some values of & and X are given in Table IIL and curves have been drawn in Figure 2 ta
- show the effect of & lack of fore and aft symmetry. For a comparisen we have given in Table
- ITT the values of ¥ and A for a spheroid of the same fineness ratio. The high value of K for
the two orthogonal spheres is undoubtedly due to the presence of a narrow waist. The sudden
drop in the value of K is proba.bly due to the lack of fore and aft symmetry. The coeflicient
K shows the effect of a change in shape mueh more clearly than the coefficient k.

TABLE 1II.

i . .
i % [ E ! & (spheraid).| & (spheroid).
‘ Lo 0.513 . 5407 L. 707

0.9 0.315 0. 5136 1028

0.8 0.5 0. 4708 154
L0 0,534 0. 4502 L%

.66 0,363 0, 46048 1434

0.41 0.448 0,471 1.25
o0 0.48 0.438 1.165
, 0 0.5 0.5 1
|

It appears from an examination of the case of the oblate spheroid that the motion of air
round & moving surface of revolution can not always be derived from a number of sources at
real points on the axis. For the oblate spheroid the sources, or rather doublets, are in the
equitorial plane. It iz possible, however, to replace these doublets by doublets at mlaglna.ry
points on the axis as the following analysis will show.

28—24—-11
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If iz, vy, 2 is & potential function, we have the equation **

Q.trﬁ‘[a;, Y—c c08 w, £—o sin «] dwm:ll_f Fletiorcos X, y,2]dX
o 9

which holds under faitly general conditions. On account of this equation we may write

h b
2 [roa [(o @) amt 100 (20 ox
£ aow [3(@ et [10n [3(H)ar
fg(a)dafasz(ﬁ' dw= f (a)dafazb£ (F)d_)(

Ri=x" 1 (y—7 cosw)®+ (z—csin w)?, B*=(z+ircos X)*+3+2%
Fla)=Ff (o) =0 (B —0oD)t, g (o) =0 (B2 —0%)3
ceos XN =f dX Joo—F=—

changing the order of integration and making use of the equations
h
}3’8__ ]
f‘-"““jas_; T ),
¢

o(hi —o?)3 31r 2 4
Ve R

which are easily verified by means of the substitution

where
Putting

making the substitution

h
da

a® =4 cos® 0+ 32 sin? 8,
we find that the potentials for the oblate spheroid in the three types of motion may be written

in the forms .
Pu= —is (ha_?) d&% (%;) 2hsf Rn
bom— f G- @t & (g)
a4 2 /1 ia ™ > /1
¢’ = —gﬁjih(m—é‘)’d& 5502 (R—”)“ +3T3 _hé (h*— %) d% 32 (?)
whera

BY =[(z-++ v +21,

These formulx resemble those for the prolate sphereid.

A distribution of sources or doublets over the elliptic area bounded by a focal ellipse of an
ellipsoid may be replaced by a system of sources or doublets at imaginary peints in one of the
other planes of symmetry by making use of the equation.!s

U g, Bateman, Am, Joum olMathamtlcs vol. 34 (1912), p. 335,
WH, Bateman, toc, oit, p. 356 ' ¢ B
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] i3 2n
f Fla—vcosd cos e, y—osin g, 2] d&=f Flz+iosin X sine, y, 2+40 cos X] dX
4 L

which likewise holds under fairly general conditions when Fiz, ¥,2) is a potréntial function
and « an arbitrary constant.

The theorem relating to the transformation of doublets in a central plane into a series of
doublets at imaginary points on the axis of symmetry may be written in the general form

ifrow 0@ & Dhu-if o g Db res

where the funetions /(o) and F(§) are connected by the integral equation

Fo- | %,’(—i)dg

In order that Munk’'s theorem may be applicable to doublets at imaginary points as wel
as to doublets at real points we must have the equation

h hl
lf F{g)d£=ff(ur)da.
T =h [1]
f ff(a)dc xff()gf s fﬂ")d"

hence the formula is verified and the complete mass may be calculated from doublets at imaginary
-points by adding the moments and using Munk’s formula.

Now

I¥. CASES IN WHICH THE MASS CAN BE FOUND WITH THE AID OF SPECIAL HARMONIC FUNCTIONS

It is known that the potential problem may be solved in certain cases by using series of
spheroidal, toroidal, bipolar, or eylindrical harmonics. Thus it may be solved for the spherical
bowl, anchor ring, two spheres,®® and for the body formed by the revolution of a limacon about
its axis of symmetry. The last case is of somse interest, as it indicates the effect of a fattening
of the nose of an airship hull. Writing the equation of the limacon in the form

s+cosd

r=2q #—1

where r and & are polar coordinates, we find on making the substitutions

reosf=g=4§ 9% rsinf=y=2%y

£=

a sinh o _ asiny
cosh ¢ —cos x ! ¢osh ¢ —cos x

that the potential for motion parallel to the axis of symmetry is

o=z UE(er by [(m+2)3 Q‘f'"” 53 mLPi:: Eﬁ;

[P (cosh 0} Pryy {cos x) — Pryy {cosh 0) Pylcos x)]

1 For refsrences sep Larnb's Hydrodynamics, 3d od., pp- 12, 149; and A, B. Baasel, Hydrodynamies, Cambridge, 1683, Vol. I,

173



174

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS.

where P, (5) and @, (s) are the two types of Legendre functions {(zonal harmonics) and Py, (9,
' (8) are the derivatives of Py, (¢} and @ () respectively. The stream-line function ¢ as found
by Basset 1s in our notation.

%is . .
¥=- cdsﬂh(':r "_63;32 Z {2m+38) Qrmﬂ Ei; Plus, (eosh o} Py, (cos x} sinh?® o sin’ x

At g great distance from the origin we have the approximate exprassions

3
¢———a“ U =5, yb——%aﬁ Uy 3 -E=cosha 208 X,

; @m+38) (m+1)3 (m+2)2Q m+t ((‘5;)}

which give the sum of the moments of the doublets from which the potential arises. The
coefficients & amd H may now be caleulated with the aid of Doctor Munk’s theorem snd an
incomplete table of spheroidal harmonics which is in the author’s possession. We thus obtain
the values ™

TABLE IV,
’ 7 ‘ k K | (sphereid) ‘ E (spheroid}
0 L o 0,500 0500 | G500
1 105 0.597 0. 507 .52 0. 502
2 L1 | 0.548 0.513 0, 524 0. 505
L2 L1855 0. 58 0,518 0. 536 | 0. 507
Ll L | wim 0,523 63t | 0507
1 1. 15 0,578 0.57 0,536 | 0. 507

S ‘The corresponding values for an oblate spheroid are given for com-
parison. The case in which s=2 is particularly interesting because
the limacon then has a point of undulation at the nose. When s<2
the limacon curves inward at the front, as may be seen from the dia-
grams in Figure 3, and the spparent mass is probably increased on
account of fluid being confined in the hollow. In calculating the fine-
ness ratio in such a cage the length has been measured from the rear

to the point where the double tangent meets the axis.
Figd

1 The values for the spherold have been obteined by inferpolation from Table T, The valuea of k end X for the eardloid =1 have been eati-
mated by extrapolation.



REPORT No. 253

FLOW AND DRAG FORMULAS FOR SIMPLE QUADRICS

By A, F. ZanM

PREFACE

In this text are given the pressure distribution and resistance found by theory and experi-
ment for simple quadrics fixed in an infinite uniform stream of practically incompressible fluid.
The experimental values pertain to air and some liquids, especially water; the theoretical refer
sometimes to perfect, again to viseid fluids. For the cases treated the concordance of theory
and measurement is o close as to make a résumé of resulfs desirsble. Incidentally formulas
for the velosity ab all points of the flow field are given, some being new forms for ready use
derived in & previous paper and given in Tables I, ITIl. A summary is given on page 536.

The computations and diagrams were made by Mr. F. A. Louden. The present text is a
slightly revised and extended form of Report No. 312, prepared by the writer for the Buresu of
Aeronautics in June, 1926, and by it released for publication by the National Advisery Com-
mittee for Aeronautics. A list of symbols follows the text.

PRESSURE AND PRESSURE DRAG

We assume the fluid, of constant density and unaffected by weight or viseosity, to have in
all the distant field a uniform velocity ¢, parallel to ¢; in the near field the resultant veloeity g.
If now the distant pressure is everywhere py, and the pressure at any point in the disturbed flow
is po+p, the superstream pressure p is given by Bernouilli’s {formula,

plp=1—-g'la, (1)
where . = pg.*/2, called the *-stop™ or “stagnation” or “nose ' pressure.
At any surface element the superpressure exerts the drag J p dy dz, whose mtegral over
any zone! of the surface is the zonal pressure drag,

D=spdydz (2)
Values of p, It are here derived for various solid forms and compared with those found by
experiment.
PRESSURE MEASUREMENTS
The measured pressures here plotted were obtained from some tests by Mr. R. H. Smith
and myself in the United States Navy 8-foot wind tunnel at 40 miles an hour. Very accurate
models of brass, or faced with ‘brass, had numerous fine perforations, one at the nose, others
further aft, which could be joined in pairs to a manometer through fine tubing. Thus the
pressure difference between the nose and each after hole could be observed for any wind speed,
Then a fine tube with closed tip and static side holes was held along stream at many points
abreast of the model, to show the difference of pressure there and at the nose, Next the tube
was thrust right through the model, to find the static pressure before end behind it. The
method is too well known to require further description.

THE SPHERE

Assume a3 the fixed body a sphere, of radius ¢, in & uniform stream of invissid liquid, as
shown in Table I. Then by that table the flow speeds at points on the axis #, ¥ and on the
surface are .

2= (1~ a*fa*}q, @ ={1+a%21%¢), ¢:=1.5¢. sin 8, (3)
where ¢ is the polar angle. Figure 1 shows plots of these equations.

1 A zone is a part of the surface bounded by two planes normal to go,  Usually one Plane is assamed tangent to the surfacs st its npstream end.
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To graph p/p. in Figure 1, we subtract from the line =1, first ¢,%/g;* to show the pressure
along x: then ¢%¢g,* to portray the surface pressure, A similar procedure gives the superpressure
in the equatorial plane.

The little circles show the actual superpressures found with a 2-inch brass sphere in a tunnel
wind &t 40 miles an hour. These agres well with the computed pressurcs except where or
near where the flow is naturally turbulent. '

By (3) and (1), on the sphere’s surface p/p,=1—2.25 sin’¢; hence the zonel pressure drag
SPp2rydy is

D= rasins(1 ~ 3sin9)p,, @

for a nose cap whose polar angle is 8. 'With increase-of ¢, as in Figure 2, D/fp, incresses to a
maximum 598 a? for §=41°— 50" and p=0; then decreases to zero for #=70°—37'; then fo its
minimum — 3927 ¢* for §==/2; then continues aft of the equator symmetrical with its fore
part. Thus the drag is decidedly upstream on the front half and equally downstream on the

T = T 1 "1
/] F- ’ 3 E-3 L3
G, " Lergth in inches

a
LIS
o7 Tean

Wind

F10. 1.—~Veloclty and pressure slong axes and over surlace of sphere; graphs {ndlcate theoretical values:
<tireles indieate pressares roessurad st 40 miles per bour in 8-fost wind tunnel, United 3tates Navy

rear half, having zero resultant. The little crosses, giving Ifp, for the measured pressures,

show that the total pressure drag in air is downstream, and fairly large for a bedy so blunt as
the sphere. :

Figure 3 depicts the whole-drag coofficient 2 (lp= 2= p a%gt, of a sphere, for the manifold
experimental ¢conditions specified in the diagram, plotted against Reynolds Number B=2 ¢uf»,
v being the kinemetic viscosity. For 0.2< R < 200000, the dats lie close to the line,

(p=28R"%+ 48, (3)

an empirical formuls devised by the writer as an approximation,
For 5<R<2 (5) fairly merges with Oseen’s formula

»=24R™ +4.5, 6)

- and for BR< .2 Stokes’ equation Cp=24(R is exactly verified. Both these formulas are theoretical.

Stokes treated only viscous resistance at small scale; Oseen added to Stokes' drag coeflicient,
24/R, the term 4.5 due to inertia.

1 From tho drag Dm Can S, where 5 is (he modet's frontal ares, one derivas the drag eoallicient Cr=BDipaS,
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Over an important B range Figure 3 shows p=.5, giving as the sphere's whole drag
D=5p,8, 7)

where 8= #° is the frontal area. That ig, tha sphere’s drag equals half fts nose pressure times
jts frontal area. For B< .2 Stokes’ value, =6+ p a g, has been exactly verified experi-
mentally, as is well known,

-

s

in
P,
*ox

E3

r;m‘ AresFure
r

T —*

A A -1
Langth in

inches

—~l5

Fia. 2.—Pressare and pressure-drag on sphers. Graphs indicate
theoretical values; eireles indicate pressure gfp. megsored at
10 wiiles par howr: ¢rosfes indicate pressura-drag £Ypa., com-
puted from measured pressurg

THE ROUND CYLINDER

Next assame an endless ecircular eylinder, of radius a, fixed transverse to the stream, as
indicated in Table 1. By that tabla the flow speed at points on the axes z, y and on the surface is

Gx=(1-a") g, gy=1+}4") s,

where ¢ is the polar angle. Plots of (8) are shown in Figure 4.

Graphs of p/p,, made as explained for the sphere, are also given the.ra, together with experi-
mental values, marked by small circles, for an endless 2-inch cylinder in a tunnel wind at 40
miles an hour. The agreement is good for points well within t.he smooth-flow region.

On the surface p/p,=1—4 sin’ 8. The integrsl 2 J‘ pdy gives, per unit length of
eylinder, the zonal pressure-drag formula, ° ’

2:=2 ¢p sin (8

Dips=2 asin 6-Sasin* 0. ®

42453 —27—34
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Fig, 4—~Velocity and pressures along axes and over surfice of endless eylinder: graphs indicate theoretlos] -va]ues;
clreles Indicalo pressures measnred at 40 miles per hour in 8-foet wind tunnel, United States Navy
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This is 0, 2a/3 (max.),0, —2a/3, for §=0°, 30°, 60°, 90°; and is symmetrical about the equatorial
plane =0, In Figure 5, the little cresses give I¥p, for the measured pressures, and show total
Dip.=2.33a.

Figure 6 delineates the dreg coefficient (', plotied against B =2 ag,/v, from Wieselsherger’s
(Reference 1) wind tunnel tests of nine endless cylinders held transverse to the steady flow.
The faired line is the graph of

Cp=0.4B-4+1.2, 10y

an empirical equation devised by the present writer,
For very low values of B, Lamb derives the formula

8
o= 20— Toe. O an

whose graph in Figure 6 nearly merges with (10) at =3,

For 15000< R < 200000, Figure 6 gives ¢p=1.2; hence the drag per unit frontal arca is

D=l.2pm (]2)

which is 2.4 times that for the sphere, given by (7).

THE ELLIPTIC CYLINDER

An endless elliptic cylinder held transverse to the siream, as shown in Table I, gives for
points on 2, y and on its surface,

gz= {1 —n)go, gy =(1+m)gy, ge={1+bfa)g, sin 8, (13)

where m, n are as in Table 1. Amidships ¢,= (1--3/a)g = 2¢ for =15, as given by (8). Graphs
of (13) are given in Figure 7.

To find a’, & for plotting (13}, assume @’ and with it as radius strike about the focus an
are cutting 4. The eitting point is distant 5’ from the origin. Otherwise, } = va?—¢*, whero
¢?=g*— b*=const. .

With a/b =4 one plots p/p, in Figure 7, as explained for the sphere. The circles give the
experimental p/p, for an endless 2-inch by S-mch strut, at zero pitch and yaw, in a tunnel wind at
40 milez an hour. The theoretical and messured pressures sgree nicely for all points before,
abreast, and well behind the cylinder.

Again, sin® = g%/ (B + %), if ?=6%—0% Hence on the model

plpe=1-afar'=1- G Al 1)

This gives the zonal pressure drag, D=2/ ,pdy, P€r unit length of cylinder, o1

8Dy g N o (15)

Dip.=2y—2@@+bS W,? --aZF
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whose graph, for a/b =4, appears in Figure 8. It rises from 0 at the nose to its maximum where
p=0, then falls to its minimom amidships.

,...,.,.
@ S

Leng it in mnches
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W = Lergth in inches

Fi15. 7.—Velovity and pressure along axes and over surface of endless elliptic eylinder,  Giraphs indicate theoreticn] valuie;
ciroles Indionle pressure Inessured st 40 milez per hour in 8-foot wind tunnel, Unitad States Navy
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Fla. 8.—Pressure and pressure-dreg on endless elliptic eylicder. Graphs [ndicate theoretical values; circles
indicate pressure pfya measored at 40 miles per bour; erosses (ndicate pressuresdrag Dfpa sompnted from
meazured préfsore
Whatever the value of /b, the whole pressure on the front half is negative or upsiream,
as [or the sphere and round eylinder, and is balanced by the rear drag. For b fixed it decrcases
indefinitely with b/a.
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The crosses marking actual values of Difp, found in said test show a downstream resultant
D, In fact, it is one-third the whole measured drag of pressure plus friction, or one-half the
friction drag.

For the cylinder held broadside on, b»a and @*— ¥ = —¢?, hence changing ¢F to —e¢? under
the integral sign of (15), we find

atd g+ B+e
Dipy=—ab=y—¥ '(—ca " log, e égs (16)
where now ¢! =02—a?, With b fixed, the upsiream pressure drag on the front half inereases with
bjx, becoming infinite for a thin flat plate. It is balsneed by a symmetrical drag back of the
plate.

Such infinite forces imply infinite pressure change at the edges where, as is well known, the
velocity can be g= /25 Tn — s, in o perfect liquid whose reservoir pressure is p,~ &=, Otherwise
viewed, the pressure is p, at the plate’s center (front and back) and decreases indefinitely toward
the edges, thus exerfing an infinite upstream push on the back and & symmetrical downstream
push on the front. In natural fluids no szch condition can exist.

THE PROLATE SPHEROID

A prolate spheroid, fixed as in Table I, gives for peints on z, ¥ and the solid surface, respec-
tively, the Aow speeds

g,= (1 =), @, = (14 m)do. o= (1 +F.) ¢o8in 8, (16}

==ttt
& ) Ly
Wimg Lengtisr in inches

F16. 4. —Volopity and pressite along aves and over surtace of prolate sphercid. Graphs indicate theoretical velues; circles
indiente pressures measured at 40 miles pox bour ko &-foot wind annogl, United States Navy; dots give pressures found
with sm egual model o British test, K, 2and M. No. 600, British Advisory Committes for Aeronnulics
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where k, is to be taken from Table II. Graphs of (16) are given in Figure 9, for a model having
a/b=4, viz., k. =0.082,

For this surface p/p, plots as in Figure 10. For a 2 by & inch brass model values of p/p,
are shown by circles for a test at 40 miles an hour in the United States Navy tunnel; by dofs for
4 like test in a British tunnel. (Reference 2.) .

By (16), for points on the surface pfp, =1—g%g*=1— (1+¥,)% sin® 8. From this, since
sin? 0=y (b*+ ¢**}, the zonal pressure drag J* p. 2 w y dy is found, Thus

i L] 2z
" ey log. VY an

]
Djpa—v?— T3 (1+ k) g2+

Starting from y=0, D/p, incresses to its maximum when p=0, or sin 8=1/(1-+%,); then
diminishes to its minimuimn for y=%. Figure 10 gives the theoretical and empirical graphs of
Dl‘{pm for a-_f'rb='4.

For 3 fixed the upstream drag on the front half decreases indefinitely with bje, becoming
zero for infintte elongation.

OBLATE SPHEROID

The flow velocity about an oblate spheroid with its polar axis along stream is given by
formulas in Table I, and plotted in Figure 11, together with computed values of pip.. No
determinations of p or I» were made for an actual flow. The formula for Djp, is like (17),
except that ¢ =3 —¢? and %, is larger for the oblate spheroid, as seen in Table I1. For b fixed
the upstream dzrag on the front half increases indefinitely with b/a. ’

Fia. LL-—Theoretieal valoclty enl prissure along x axis of oblate spheroid. Dismeter/thicknesim4
CIRCULAR DISK

The theoratical flow speeds and superpressures for points on the axis of a cireular disk fixed
normal to a uniform stream of inviscid liquid are plotted in Figure 12, without comparative
data from a test. One notes that the formulas are those for an oblate spheroid with eccen-
tricity e=1. .

For 1500<7g, afv < 500000, Wieselsherger (Refarence 3) finds for the gir drag of s thin
normal disk, of area S,

D=11p.8, (18)
or 2.2 times that for a sphere. For agy/v extremely small, theory gives
D=51r uag, (18)

as is wellknown. Test data for a complete graph, including these extremes, are not yet available.

Wirdg
1z, 12.—Theoret (28] pressure and veloeily along axis of disk
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REGIONS OF EQUAL SPEED
In the flow field g, p are constant where ¢, + ¢,! = constant, viz. where
&l = (1 +m)? sin*d+ (1 —n)* cos’ =const. (20)
In particular for the region ¢=g,, this becomes
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F1a. 13 —Tnertis coeffcirnt v, clongntion. P}utted from Tabla 11

which applies to all the quadries in Table I. Clearly tan #=0 for n=2; tan®*f=n/m for
m, n=0, viz. for gll distant points of (21). For these points the normal to any confocal ellipse
lies along the radius vector and asymptote of (21), as seen in Figures 14 to 17,

m
|

)

(]
H \\\ /b\ ﬁ&n 1
. e N ﬁ_.:m.'l_ 2
— R
VoSN
I \\
%.\\ pr.

Fi6. 14.—Lines of steady Bow, lines of congtant speed and pressure, for
infinits fristionleas auid streaming paat u sphers

For the sphere n=2m=a*/r*; hence (21} becomes

2rP—a

tanig =2 SR g 22}

where r—a” = ¥2*+3% The form of this is depicted in Figure 14.

* tan A=pfz is the slope of & radis! line through the point (r, ¢} where (20} cuts & confoeal curve a'd’, of TableI. Knowing &, ', 8, to lotate

{r, p) draw acrass the radial line am arc of o’ by slidiog along {he r, ¥ axe® a stralghtedge subdivided 82 1n the ¢lpsograph,  The speratido £ rapid
and easy.
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For a round cylinder & =m=a*/?; hence

22— g?
tantf=55—r or, 2r®=q? sec 26, (23)

which iz the section of a hyperbolie eylinder, as in Figure 15.

glg,=.935

~

Fiq. 15~Lines of steady Sow, lines of constant speed and pressure, for infnite frictlonless liquid stredming across e ndless
rotind exlinder

Fiz, 16,—Lines of sieady fow, lines of congtant speed and pressure, for jnfinite fricticmless liguid
siresming across endless elliplic eylinder
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A plot of (21) for an elliptic cylinder, fixed as shown in Table I, is given in Figure 16; for a
prolate spheroid in Figure 17.

Besides the region (21), having ¢=g¢,, it is useful to know the limit of perceptible disturbance
say where ¢*/¢,2=1%.01. This in (20) gives

(L+m)?sin® ¢+ (1—n)* cos® §=1%.01, {24)
which applies to all the quadrics here studied. Hence

n2-n 0.01
m2+m>m2+m) cos?d

tan?® §=

(25)

A graph of (25) for a round cylinder is shown in Figure 15. Like plots for the other quadrics

Fia. IT.=Li_ex ofstonty oy, liaes of constant speed and pressurs, For infinits frielion.
lass linuid strearming Yest & prolote spheroid. Fulldline curve =g, refers to stroam
parallel $o 2; dotted curvs gmgorefers to siream indined 10° bo 3

If in (20) a series of constants be written for the right member, the graphs compose a family
of lines of equal velocity and pressure, covering the entive flow field. - Rotating Figures 14, 17
about z gives surfaces of ¢g=g,.

COMPARISON OF SPEEDS

Before all the fixed models the flow speed is g, at & great distance and ¢ at the nose; abreast
of them it iz g, at a distance, and (1+k,)¢, amidships.

The flux of ¢—g, through the equatorizl plane obviously must equal ¢,8 where 8 is the
body’s frontal area. Hence two bodies having equal equators have the same flux ¢S, and the
sams average superspeed or averege ¢—¢g,. But the longer one has the lesser midship speed;
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henee its outboard speed wanes less rapidly with distance along y. A like relation obtaing
along # from the nose forward. These relations are shown in the velocity graphs of Figures
18 and 19. A figure similar to 18, including many models, is given in Reference 4.

g 1

I,
1
1

I

Y

ﬁ -‘\\

Tra. 18.—Buperposed graphs of Bow spead abresst of endless round sod eliptic
eylinders of same thickness fixed trabsverse ta gt ledoite stream of luviscid
liguid. At grest distance DoW Speed i3 s

P

...‘..._éQ e

Fra. 19.—3uperposed eraphs of axial dosw speed bafore three andlesz exlindare 1, 2, and § (3 aseulating
9, each fyed transverse to an infnita stream of inviscld Hquid. At great distance Aow Speed i3 4.

COMPARISON OF PRESSURES

The foregoing speed relations determine those of the pressures. The nose pressures all
are p.=p}/2; the midship ones are p=p,— (1+%)%.. The drag on the front half of the
model is upstream for all the quadrics here treated; it increases with the flatness, &s one proves
by (18}, {17}, and is infinite for the normal disk and rectangle.

APPLICATION OF FORMULAS

The ready equations here given, sside from their scademic intersst in predicting ngtural
phenomena from pure theory, are found useful in the design of air and water eraft. The formula
for nose pressure long has been used. That for pressurs on a prolate spheroid, of form suitable
for an airship bow, is so trustworthy as to obviate the need for pressure-distribution measure-
ments on suweh shapes. The same may be said of the fora part of well-formed torpedoes deeply
submerged. The computations for stiffening the fore part of sirship hulls can be safely based
on theorstical estimates of the local pressures. The velocity change, well away from the
model, especially forward of the equatorial plsne, can be found more accurately by theory
than by experiment. The equation (21) of undisturbed speed shows where to place anemometers
to indicate, with least correetion, the relative speed of model and genersl stream.

REFERENCES

1. WIBSELSBERGER, C.: Physicalische Zeitschrift, vol. 22. 19%1.

2. Jones, R, and Witttams, D, H,: The distribution of pressure over the surface of airship moedel T. 721,
together with a comparison with the pressure over a spheroid. Brit. Adv. Com. for Aeron. Reports and
Memoranda No. 600, 19519, ’

3. WIESELSBERGER, C,; Physiealische Zeitsehrify, vol, 23, 1922,

4. Tavror, D. W.: Speed and Power of Ships, gives a figure similar to 18 buf ineluding more models. 1010,
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SYMBOLS USED IN TEXIT

Ty Yo arnan Cartesian coerdinates; also axes of same. | wo________ Kinematic visoosity.
Y Polar coordinates, R Nose pressure=p ¢4/2.
Conmn man Augle. of attack of uniform streamn. Pomnamn--. Pressure in distant fluid.
Bemmemmem h of arc increaging with 8, % ________ Superstrealn pressure any where.
| Ine nation to r of mormal to confocal| D____._.. Zonal pressure drag= f p dy dz.
ecurves in Table I. Do .. Whole drag.
Wemmaman Velocity funection. 8. .- - Frontal ares of model.
$--cuwe---- Btream function. Coemeannn Drag coefficient=D{p.8.
[ P, Resultant velocity at any point of ﬂuid. |-, Reynolds number,
Gommommmm Vel-oclty of distant fluid (parallel to [ SR Radius of sphere, cylinder.
xXis). ai |, Semniaxes of ellipse.
P T ) Veloelty st points on © and & axes (parallel | &', b _._ Semiaxes of eonfocal ellipse.
to x axis). € e Eccentricity of elfipse.
- FT— Velocity along contoeal surface or maodel | o ... entricity of confocal ellipse.
surface. S Focal distance =ge=a'¢’ =ai— b}
Gre e Yelocity normal to confocal surface. Ko mmman Inertia factor (Table IID,
P Dencity of fluid. m, n, Me - gnant.ities defined in Tables F, IT.
Poome e Viscosity. LR olatitude (see equation 30).
TABLE I
Flow functions for simple nuadrics fixed in a uniform stream of speed ¢, along = positive
Value of functions at any confocal surfaces of semiaxes o, b
Symti?éngeﬁni' Form of quadric L
Velacity funetion ¢ Stream function ¢ %mpongftqvelocmes
1 9
. 1
_—i1 h 1 m| Differentiation along
g o=~ ) g v m'P:_E (=) goyf”, whe arc s of either figure
phere @ a* g;ves.
m=pgo7 n=_5 . Atmya
; *"5‘ ds_ o
See(%:;g;?)n A - s sin 8, valid for all the
p=—(4maa, | y=—(-wgy, | B5res
Circular cylinder o . I35y EE- = ({1=n)go
meon A=_n eot 4, for the eylin-
ders;
_ 12 dy
a+ v=—(1—n) v oy as~ ="
A ™) 4o%, - ™) dath Go ;:fos 8, 1‘011' the %xial
Elliptic eyHnder b atd b atd surfases} viz, sphere,
e — —— 13 =iy o~ spheroids, disk.
o o't o' b Fora, b'eb, b, Table |
II(gwes 1;;‘, whence
. =(1-}m,) g, Sin @
See diagram B ;Ethe flow velocity o
- _— = ¥ 0D &
(fg. 20} w=—(1}m) q.t, ¢ (l ) g’ ﬁxed&:]:l‘.lsd.lgp illl‘f_a&‘:&
la heroid + o= £ 0 for disk. since
Frolaje sphore! og i -2 | 14 20 | TR
g=EW)‘an_5n i — 1—¢ 0% { i T o Remark—both gy qn
log, SFe. 2 | "= T¥e can be derived from [
1l 1—¢ logs i1 @ ather ¢ or ¥,

. ?b-i Yp=m8%, §; In
on a at any other
point ilhereof _

=== {14m) 0.1, —‘—" (1-n) g.4%, Qi=: gin 9, §a=¢a
Oblate spheroid ey . o eos o
s—bL\I'b’ —af rp—— grosn e %‘ —sin ~1¢*
e .o, n=-_=
See disgram C | p B e 3 —sin "te
|i {fig. 20
|
! l 1
i ¢e=—(1}m)q.z, ¥=—g {1—n) ¢.3%,
i Circt'ljlar diisk 2 !
a=u, e= _ ——Si -l F)k s
! . mn= ( n—re in= (-Ea—sm lg )
| 1

&, ¥, in elliptic coordinates, can be found In textbooks; e, g., §§ 71,105,108, Lamb's Hydrodynamics, 4th Ed.
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TABLE II
Inertia factors k* for quadric surfa.ce.s in steady translation along axis a in Figure 20
Prolate sphercid E=a/b
Elonga- Elliptic cylind:r, E=qafb 1oge }_.{. 6 26 Obla,tg spt;rou; E=_ lbf e
tion B ko= pam—— % b=t E sinTle
a log, LTe_  2e * e—E sine
R P By
| B L. 000 Q. 500 0. 500
L §0 667 . 306 . 803
2,00 . 500 . 209 1. 118
2. 50 . 40 157 1. 428
3.00 333 121 1, 742
4 00 250 032 2. 379
5. 00 204 . 059 3, 000
G, 00 . 167 + 045 3. 642
7.00 . 143 . 036 4. 279
8 00 . 125 , 029 4 915
9. 00 111 L 024 5. 549
10. 00 . 1M . 021 8. 183
- . 300 . 000 «

* In thi table Ro=m, of Table I, vir, tho value of = when of, ¥ &g, b, Lamb (B.and M. No. 623, Brit. adv. Com. Aeron.) glves the numerical
viluus in the third e¢lumn sbove. For motior of olii ptic eylinder nlong b axis inartia factor is ky=ajb.

Diagrom B Yy Diagrom © . Y

Logrom 4 ¥

YELOCITY AND PRESSURE IN OBLIQUE FLOW ?
PRINCIPLE OF YELOCITY COMPOSITION
A stream ¢, obligue to a model can be resolved in chosen directions into component streams
each having its individual velocity at any flow point, as in Figure 21. Combiniag the individuale
gives their resultant, whence p is found.
YELOCITT FUNCTION
Let a uniform infinite stream ¢, of inviscid liquid flowing pasi a fixed ellipsoid centered
at the origin have components U, V, W along &, y, 2, taken parallel, respectively, to the semi-
axes, ¢, b, ¢; then we find the velocity potential ¢ for ¢, 85 the sum of the potentials v, ¢, ¢
for U, ¥, W.
In the present notation texthooks prove, for any point ¢, ¥, z) on the confocal ellipsoid
& b ¢,
ea=—(1+m.) U, (26)
and give as constant for that surface

= dg’ L= da” %
ma=abc(1—abcﬁ Ty c,) J; IV & 21

the multiplier of f being constant for the model, and h=¢' *— 42 Adding to (26} analogous

values of ¢,, @, gives .
g=—(L+mg) Uz — (1 +m} Vy— (1+mo) We=— (1 +m)gh, (28}

¢ Thiz brlel traatment of oblique Aow was added by request after the proceding text was Anished.
* Simple formeudes for thls integral and the correzponding b, ¢ omes, published by Greene, R, 5. Ed. 188, are given by Doctor Tuckerman in
Report Mo. 210 of the National Advisery Committes for Aeroneuiics for 1925, Sowe peady valoes are listed Lo Tables IIT, TV.
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where % is the distance of (z, y, 2) from the plane p=0, and m,, s, m,, m are generalized inertia
coefficients of @’ ' ¢’ for the respective streams U, V, W, go. For the model itself the inertia
coeflicients usually are written kg, k5, k., k. The direction cosines of % are

_14m, U _1+m,_‘7_’ N_l—l—mc E’ 29)

L I+m g’ = i4m g i4m, g,

as appears on dividing (28) by (1+m)q,, the resultant of (1 +m,) U, (1+m,)V, Q+m)W.
EQUIFOTENTIALS AND STREAMLINES

On o’ b ¢ the plane sections ¢ =constant are equipotential ellipses parallel to the major
zection ¢=0, and dwindling fore and aft to mere points, whichzwe call atresm poles, where the
plane (28) is tangent to a’ & ¢*. If e is the angla between anyZnormal fo ¢” ¥ ¢’ and the polar

b
!
1 ¥
Fl6. 21 —Buperpotition of streamiine velacitics for samponant plans fows parsllal
$0 axes of elliptic cylinder

normal, whose direction cosines are L, M, N, we aall the line ¢=const. a line of stream latitude.
Thus ¢ is the colatitude or obliquity of a surface element of @’ b ¢. The line ¢=90° is the stream
equator. This latter marks the contact of a tangent cylinder paraltel to the polar normal, viz,
perpendicular to the plane (28), as in Figure 22. 1f1, m, » are the direction cosines of any normal
to @' B ¢

cos e=IL+mM-+nN. (30)

Since the streamlines all cub the equipotentials squarely® the polar streamline must run
continugusly ngrmal to- the family of confocal ellipsoids ¢” 3 ¢’. Hence it forms the intersec-
tion of a pair of confocal hyperboloids, and at infinity ssymptotes a line parallel to g, through the
origin. This straight line may be called the stream axis. 1ts equationisc:yie=U:V:W.

+ On the model, therelfors, the streanlines ars longituds liaes, viz. orthogonals to the latitude lines.
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COMPONENT ¥ELOCITIES

At any point of any confocal surface a’ b ¢’ the streamline velocity ¢, perpendicular to the
equipotential ellipse there, has components ., g, Tespectively, along the surface normal »
and the tangent s in the plane of ¢ and #. By (28) we have

dedh . .
QF‘@'E&”‘LB“J &, (31)

where —3p/h={1+m)gs=¢,=max, q, is the equatorial velocity. By (28} the inward normasl
velocity due to ¢, 1s

~2 @+ m) o= —l0-na)T, 32)
7, being constant on ¢’ & ¢/, ag may be shown. Similarly, es, ¢. contribute —m(1—2,)F,—n
(1—n,) W; hence the whole normel component is

ge=l1=n)0—m(1~n)V—n{l—n) W=7, cos ¢, (33)

whera ¢,=[(1— 22 TP+ (1 —n,)2 ¥4 (1= 2, Wi9=max. q, is the normal veloecity at the stream
poles. Some values of ny, %ty are given in Tables I, III, One alse may find (33) as the norma)
derivative of (28).

We now state (28): At any point of @’ b’ ¢’ the velocity potential equals g;k the equatorisl
gpeed times the distance from the plane of zero potential. Similarly (31) (33) state: At any
pointof o’ b ¢’ the tangential speed (g, sin €) equals the equatorial speed times the sine of the
obliquity; the normal speed {7, cos €) equals the polar speed times the cosine of the obliquity.
This theorem applies to all the confocals, even at the model where g,=0.1

Incidentally the normal flux through &’ ¥ ¢’ is /T, cos e-dS =Y, S dS,, where S, is the pro-
jection of S on the plane of ¢=const, and equals the cross section of the tangent cylinder,
The whole flux through &' }* ¢/ is therefore zero, as should be.

FOLAR STEEAMLINNE

Some of the foregoing relations are portrayed in Figure 22 for a case of plane flow. Note-
worthy is the polar streamline or hyperbola, Starting at infinity parallel to g, the polar fila-
ment Tuns with waning speed normally through the front poles of the successive confocal sur-
faces; abuts on the model at its front pole, or stop point; spreads round to the rear pols; then
accelerates downstream symmesric with its upstream part. Tts equation q,=0=20¢/0s can be
written from (28)

*
=(1+m)Usin §— (L+my) ¥V cos §=0, or tan 9=:i$i% (34}

This asymptotes the stream axis yjc= ¥/ U; for at infinity mq, m,~=0, and tan ¢=V/¥. Plane-
flow values of m,, m; are given in Tables I, III.
All the confoeal poles are given by (34); those of the model are at the stops where

1+k V_a&y
0= T, T ®7)

Thus on an ellipti¢ eylinder they are where y/e=0/¢*. V/I; on a thin lamina they are at
&= t¢ oS o, as given in the footnote, Tables II, IV give values of &, &s.

{1 An analogous theorom obtalns nlzo for any othor uniform stoady stream, say of hest or elsctricity, thot bas Tore Dormal component at the beund-
ary ellipseid and zere concentration in the dow feld,
* Tograph (M) weo ray use ihe known relations, " .
tan tmgy Vel tan o, s
where tml:; - ‘ﬁ"‘wU is the slope of g, or tho asympiote lo (34), Thus (M) becomes a’{¥ - (14+me)f(Ll+m.), which with the labuleted values of
g, W, 0@
- . ’
cﬂeostu R @
a hyperbols whose semiczes are ¢ 608 «, ¢ sin «, ¢ being the focal distsnce, In this trestment zma’ tos o, p=0' siD o, « being a fxed eccentric
angle of tive snccessive confoch] elipses.
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Each angle of attack has its own flow pattern; each its' polar streamline given by (34).
A close-graded family of confoeal ellipses and hyperbolas therefore portrays all the poles and
polar streamlines in the plane ab for all angles of attack. The family can be written

x=a’ cos w, y=b gin a. {38)

Thus, giving @/, ¥’ a set of fixed values, then « a set, wes have the confocal families

LAy o _
artgn—1 Foodta Fanfa ' (39)

the first being sllipses, the second hyperbolas like (36) below.
Similarly, the locus . =0, or g=§, is written from (33). With W=0,

i=n, T,
tan 0=—1—"* (20}

Tts diseussion is of minor interest.
DPEAG AND MOMENT

Formulas for the pressure p all over the simple quadrics here treated are well known, for
oblique as well a3 axial flow, and serve to find the drag and moment. For uniferm flow the
resultant drag is zero; its zomal parts can be found as heretofore. The moment about 2 is the
surface integral of p(y dy dz—z dx d2), and generally is not zero.

REGIONS OF EGUAL SPEED ABOUT OBLIGUE MODELS

Compounding the velocities (31), (33) at any point in the ab plane, as in Figure 22, gives
for ¢ eonstant

F=1+m,)Usin 06— (1+my)V cos 82+ [(1—n.) U cos #+ (1 —ny) V sin 8*=const. (41)
In particular for ¢*= TP+ V2 (41) gives
2
tan 0=8 (4 + yBOT )=, tan . (42)
where £=V/U, and

CA=(L+mg) (14 ms)— (L~n) (L—2ny), B=m.(2+m) —ns {z—n.)r,op=“—“(2£T“")—m,(2+m,}.

FiG. 22.—Polar stresmline and component velocilies for unitorm strears of inviseid iquid about oblique
© ellipthe eylinder

For an elliptic cylinder, as is well known.
b atd b a+b « o ath _a atd
T a b Ra= B g 1B il Y BT
which determines A, B, ¢, and thence 8 in terms of ¢’ 3’. Thus, for an endless elliptic cylinder
of semiaxes a=4, b=1, yawed 10° to the stream, i. e., V/T=tan 10°=.1763, the graph of (42)
has the form shown {ull line in Figure 23. This graph takes the dotted form when V=0, ¢,= [,
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For a prolate spheriod of semisxes a=4, b=1, yawed 10°, the graph of (42) is shown in
Figure 17,

Fia. 23.—Lings of steady Aow, lines of constant spead and pressure, for infivits frlotfonless Naquid
streaming morass sndless elliptic cylinder. Irotted curve refers te siream parallel tox ; full-lloe
CUCTY §=ge refors (o stream {Delined 10° tor

The two values of tan 8in (42) are

tan ﬁl=%(A ++BO+ 4%, tan fz= %(A —BCT 4, (43)
from which are readily derived .
S _ _
tan (3~ = 2EVBOIL, o 4= 2K (44)

(43) give the @-ward inclinations 8, 8., of the asymptotes of the curves g=g,. As cén be
proved, the interasymptote angle §,— §; remains constant as K(= V/¥) varies and the asymp-
totss rotate through 14(8,+ 8:) about the ¢ axis.

Thus, with an elliptie cylinder, giving A, B, ¢ their values at e makes

B )=,  tan (@+e)— ot (45)

hence the asymptotes continue rectangular, as in Figure 23, while with varying angle of attack

they rotate through 24(8,+8:). Or more generally one may show that d% BLi—B)=0.. 85— fa=

const.

A gimilar treatment applies to the other figures of Table III. For all the cylinders the
interasymptote angle is 90°; for the spheroids it is 2tan™Z =109°=28" in the ad plane.
Figure 17 is an example. If the flow past the spheroids is parallel to the b¢ plane the inter-
asymptote angle for the curves ¢=g, in that plane is obviously unaffected by stream direction.
It i= 90° for infinitely elongated spheroids; 109°—28‘ for all others. Excluded from the gen-
eralizations of this paragraph are the infinitely thin figures, such as disks and rectangles edge-
wise to the stream, that cause no disturbance of the flow. Passing to three dimensions, we
note thet the asymptotic lines form asymptotic cones having their vertex at the origin.

42488 27 a5
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SUMMARY

For an infinite inviseid liquid streaming uniformly, in any direction, past an ellipsoid or
simple quadrie:

1. The velocity potential at any confocal surface point equals the greatest tengential
speed along thet surface times the distance from the point fo the surface’s zero-potential plane,

2. The tangential flow speed at ssid surface poini equals the greatest tangential speed
times the sine of the obliquity, or inclination of the local surface element to the equipotential
plene.

3. The normal speed at the point equals the greatest normal speed times the cosine of the
obliquity.

q&. The locus of g=g, is a cup-shaped surface asymptoting o double cons with vertex at
the center. '

5. The vertex angle of this come is invariant with stream direction; for cylinders it is
90°, for spheroids it is 2tan+/2 = 100°—28',

6. The velocity and pressure distribution are closely the same as for air of the same
density, except in ot near the region of disturbed flow.

7. The zonal drag is upstream on the fore half; downstream on the reer half; zero on the
whole. These zones may be bounded by the isobars, ¢ const.

For the same stream, but with kinematic viscosity », if the dynamic scale is R=g.d/v,
d being the model’s diameter:

8. The drag coefficient of a sphere is 24/K for RB<(.2; 288 %+ 48 for 0.2<{H<(200,000;
and 0.5 for 104<R<10°

9. The drag coefficient of an endless round: eylinder fixed across stream is 8+/R(2.002—
log.R) for R< .5; approximately 9.4 £B~*+1.2 for 0.5< R<200,000; 1.2 for 10*<R<(200,000.

10, For 15,000<_E< 200,000 the drag coefficient of a round cylinder is 2.4 times thai for
a sphere.
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TABLE Il
Flow functions for simple guadrics in stream V along y positive
{Fot all shapes ¢=—(1+ms} Vy, gr=[1+m) V¥ sin * gn=—(1—=ny ¥ cos ¢

Shape my fip
2 ’ a3
Sphere 2‘(‘? =
2 2
Circular eylinder f:';-x :—:3
e . & atd
Elliptic cylinder -g,— CT":‘-I-':_II" {% E';i_l)_'
: . 14+ 2¢' 14+¢ 1—2¢"
Prolate spheroid log. I—¢ —T— log, = s,—?e’ T—e®
o= fof—1 T ide , 1-22 1+¢_ ., 1=2¢
[ log.,ﬁ-u =g log, 1 2¢ T—g
7
Oblate sphereid e T—eT—sin—le 8'11#——l+ : e,s“'SiD"s‘
J— “Yxe — _wAThET
!

= « i5 the angle between bt and oy sormel to the ¢onfocal serdace,
TABLE IV
Inertia factors &, for quadrie surfaces in steady tranglation slong axis b in Figure 20

Prol, Sph?l:i" Ena;’g
Eliip. oyl E=ufb e _ _2e Obl. epher, E=bfa
Egilons%r P i log. T~ 122 Ry u = Esinle
on - P g 1T g, 12 Tt ) —Esiny
‘T—e 1= |
!
1. 00 1. 00 0. 500 9. 500
1. 50 1. 50 . 621 . 884
2.0 2,00 . 702 . 310
2. 50 2. 50 . 763 B
8] 3. 00 . 803 223
4,00 400 . 860 174 !
5. 00 3. 00 , 8§95 « 140 :
i) 8, 00 . 918 . I21
7. 00 7. O . 933 . 105
8 (0 g 00 , 945 L 092
0. 00 0.00 054 . 084
10. 30 10. 00 . 080 D73
@ w 1, 000

The numerical values in eolumn 3 are given in Lamb’s paper already ciled; those in column 4 are given
substantially by Doctor Bateman, Report Ngo. 163 National Advisory Committee for Aeronautics, 1923,

195



196



REPORT No. 323

FLOW AND FORCE EQUATIONS FOR A BODY
REVOLVING IN A FLUID

By A. F. ZAHM

Aerodynamical Laboratory
Bureau of Constraction and Repair, U. 8. Navy

IH397—-30—27

197



198

CONTENTS

BUMMARY - - o v e e e e
Part L. INTROBDTCTION - o oo~
Steady-flow method____________..
General formulas for velocity com-

Geometrical formulas. .o ___._..
Clonventions « oo oo oo acao oo
Parr I1, VELOCITY AND PRESSURE. _ ___
{A) Bodies in Simple Rotation ...
Elliptic cylinder__________...._._.
Prolate spheroid_ . ___________

{B} Bodies in Combined Translation
and Retation .. ... .
Most general motion. .. ...~
Yawing flight_ _cccoocaaa e
Flow inside ellipgeid_ .. .. ... ...
Potential coefficlents. ... - _______
Relative velocity and kinelic pres-

413
413
413
414
415
416
416
416
418
422

422
422
422
424
426

Part II1. Zowal FOoRCE aND MoMENT
o Howe Forms . _________________
Pressure loading _ _ __ __ ... ...
Zonal foree. .- oo a.oo.
Fonzl moment_ _ __ . __._._._..
Correction faetors . oo ___.
Parr IV. RESULTANT FORCE AND Mo-

Body in free space_.._..
Reactione of fluid. . . _____.____
Combination of applied forees. __ ..
Hydrokinetically symmetric forms_ .

Examples. . oo oooo .
Theory rs. experiment . ._____.
Correction {aetors. o oaooceooaaan
Pairr V. Porentiir CoEFFICIENTES—IN-
BRTIA COBFFICIBNTS - - cecmcvemmu s =

Green's integrals__ ... ... _.
Potential coefficienta. . o .. ___._..
Inertia coafficients______________.
Limiting conditions_ .. ... - .
Physzical meaning of the coefficients.
B8vueors Usep v THE TERT ._______.
REFRRENCES 2o ccae mmo e oemmo_m-
TaBLES AND DIAGRAMS .. ____.._.

427
427
428
425
428

4249
429
429
431
432
432



REPORT No. 323

FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID

IN FIVE PARTS
By A, F. Zaum

SUMMARY

. This report, submitted to the National Advisory Commitlee for Aeronautics for publication, is

a slightly revised form of U. 8. Navy Aerodynamvieal Laboratory Report No. 380, completed for the
Buregu of Aeronguiics in November, 1928, The diagrams and tables were prepared by Mr. F. A,
Louden; the measurements giwen tn Tables 9 to 1 were made for this paper by Mr. R. H. Smith,
both members of the Aeronautics Staff.

Part I gives a general method for finding the steady-flow velocity relative to o body in plane
curvilinear motion, whence the pressure s found by Bernoulli's energy principle.  Integraiion of
the pressure supplies basie formulas for the zonal forces and momenie on the revolving body.

Part I, applying this steady-flow method, finds the velocily end pressure at all poinis of the
flow tnside and outside an ellipsoid and some of its limiting forms, and graphs these quantilies for
the latter forms, Jn some useful cases experimental pressures are plotted for comparison with
theoretical.

Part IIT finds the pressure, and thence the zonal force and moment, on hulls in plane curvi-
linear flight.

Part IV demes general eguations for the resultant fluid forces and momenis on trisymmetrical
bodigs moving thrngh @ 'perfsd fluid, and in some cases com;pam the moment values with those
found for bodies moving tn air.

Part V furnishes ready formulas for potential coeﬁcwnta and inerfia cogflicients for an ellipeoid
and its limiting forms. Thence are derived tables giving numerical mlues of those coefficients for
a comprehensive range of shapes.

199



200

'REPORT No. 323

FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID

PART I

INTRODUCTION

Steapy-rrow METHOD.—In some few known cases one can compute the absolute particle
velocity ¢ at any point (¢, 4, 2} of the flow caused by the rotation of a body, say with uniform
angular speed @, in an infinite inviseid liguid otherwise still. Thence, since ¢ is unsteady at
[z, ¥ 2), the instantaneous pressure there is found by Kelvin's formula p,/p= —dp/ot—¢'*/2, 2,

"being the supervacuc pressure there, and ¢ the velocity potential.

Qtherwise superposing upon said body and flow field the reverse speed —&, about the same
axls, gives the same relative velocity ¢ but which now is everywhere a steady space velocity.
In the body’s absence the circular flow speed at the radial distance B would be ¢=—QR! If
the fixed body’s presence lowers the speed at (2, ¥, 2) from g, to ¢, it obviously begets there the
superstream pressure

R SO —— SO

or in dimensionless form, @ being some fixed length in the body,

szﬂz:%(lﬂqsf%")----I-----------------. -------- (1)
2

The present text finds'p by this steady-flow method only, and applies it to streams about various
forms of the ellipsoid and its derivatives.
The superposed circular Sow, g,= — QR = — 2¢/dR, has the stream-function

which, for rotation about the 2 axis, plots as in Figure 4. This flow has no velocity potential,
since O¢fOR %0,

GENERAL ForMULAS FOR VELoCITY CompoNENTs.—In plane flow,® as is known, a particle
at any point (z, ) of a line s drawn in the fluid has the tangential and normal velocily com-
ponents ’

_dp_ ¥ Jde O

1This velocity sntails the sentrifogal prassure p, = p QIRYE st all distances, R= y7H-37 (rom the rotation azis of the cirenlar siream, here assumed
to be constrained by s coaxinl olosed eylinder inAnitely large. To the dynamic prassure p,+p may also be added sny arbitrary stotic pressure
suck B2 dbat due to welght or ether impressed force. s

1 At amy surface-polot of the body ¢ Is the velocity of wash or slip, whather the body moves or not; it ia ¢';—¢"'s, the difference of the tangential
space veloeities of the flnid and surface point.  Ii the body is Bxad g7 =m0, gurg'.. .

4 Plage How, viz two-dimensionsl flow, litarally means flow fu » plane; the term applies alse to space fow that {3 the same in sll parsllel planes.
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where 33, n are elements along the line and its normal,
respectively along ds, i» positive; e. g. Figure 2.

“=g—§=g_5 | ”=%”—g—f ............. @)

In selid flow (3), (4} still hold for ¢, and further w=0¢/@z. In
general, @ =ut+ o' +wf=¢ +g.’. At any point of a surface drawn in the
fluid ¢, is taken in the plane of ¢ and ¢,. Al these velocities are referred
to fixed apace.

Svrrack VELOCITY.—A fixed body in any stream, sinee ¢,=0, has
the suriace flow velocity g=g,, which put in {1) determines the surface
pressure, _

At any surface point of an immersed moving body ¢, is the same for
body and fluid, hence is kmown from solid kinematies. Thaus, if the body
is any eylinder rotating as in Figure 1,

n=—0R dR/ds=QR ain (§— H=0h =Q(me—ly)_ . .____ .(5)

where the symbols are as defined in Flgures 1,2
More generally, for any surface with velocities Q,, 2,, @ about the
axes &, ¥,

Ga={ny —me)Q, + Jz— nx)Q, + (me—Iy)Q,

where I, m, n are the direction cosines of the surface normal, as in (13;).

As usual, ¢,, ¢, are reckoned positive
The components along x, ¢ are

9
Y

% e,

H
R
£ ot

N =

Faves 1 —ompondnt velowi
tieg gm, §¢ ©f suzface point of
" soy rigid ¢ylinder haviog sn-
gular speed § aboul any axis
parallel o its langth, gu=
by ge=Df:. hwB sin (8-
H=—R dR{Qs=mi—ly, 1, m
beftig direction cosines of the
Bormal ta the contolr elament
dsat ix, ). If the body rotates

in 8 fluid, gn=of/ormdpfin,
At any surface point ¢ is the
same for hody and floid; g:
different except at points of oo
stippage

If at the same time the body has translation components, U, ¥, W along %, y, 2, (6) must be

incressed by I +mV+n W, giving

side the body.

Ea={ U+ 20, —y) -+ m (V- — 20,) + n( Wy, —a,) - _(T)

" But (5), (6), (7) express ¢, only at the model’s surface.
Equations (1) to (7) obtain whether the fluid is inside or out-

Zoxal Forces anp Momzents.—For any cylinder spinning

about 2, as in Figure 1 or 5, surface integration of p gives, per
unit of z-wise length, the zonal* forces and moment, respectively,

X=Jpdy Y=Spda N=Sprdr.__..(8)

where p dy, p de are the ¢, ¥ components of the elementary
surface force p ds, and r is the radius vector of (¢, ). To derive

FIGURE i—Ceometric data for conforal
ellipses, £wa’ pog qmr cof 8 y=b 2in

[ o
=t §i0 4 = (oD §=tan 1=gz tan f=

F £: h=rsin o—8% hwr 0o @—p. 7. Having no moment, » » d8 can be ignored, leaving only p
J=atma’ &, o= I=0ai bemgeccen.  dr with arm #. Thus, 2N= S ? d(#*}, which varies as the area of
tricity of ab the graph of p versus r*.

A surface of rotation about z, spinning about its z axis, has zonal forces

X=J'fpdydé

14 zone is any part of the surface bounded by fwo parallel planes; in this text they are assumed normal to 7, and the zone has the bounding -

plangs =i, f==x; in Pard 10X other planes are used; e. g, F=z,, I=¢.

N we note that p ds has components p r dg, p dr slong and across
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1f ds,, ds. are elements of its lines of meridian and latitude, as in Figure 3, the moment about
2 of p ds, ds. is p 7 dr ds, in the plane =0, and p r dr dse cos w=p 7 dr dz=dXN for any
meridian plane; hence the zonal moment is

where P= f " p dz=d¥/dz, is the y-wise pressure-force per unit length z-wise® Thus, as for
=iy

' (8), N varies as the ares of the graph of P versus r*. Algo one notes that

Fis

Y= fPdx P=2z , peose dw. oo _______._ (10,}

Since p is symmetrical about the ¥ axis, Z=0=Y=L=MH=N; viz,‘ the assumed zone is
not urged along ¥, 2 or abouwt %, ¥, 2. In general, X is not zero for such a zone, but is zero for
the whole model. The zonal ¥, N are zero for steady
rotation sbout z in & frictionless liquid, because p is
symmedtrical about the # axis; but are not 50 in a viseid
fluid, nor for accelerated spin in a perfect fluid.

For trisgmmetrical surfaces. we note also: If the
zones were formed by planes normal to 2z, zonal X
would be zero for motion about z; zonal A in general
not zero; e. g., for a viscid fluid. Similaxly for zones
with faces normal to y.

By (10) the bending moment about the 2 ordmate

in the plane y=0 lsf P r dr. This is zero for a frie-

T .

tionless liquid; for a viscid fluid it increases with length

of zone.

Fravke 3 —CGeometrie data for prolate spherold. Teea 008 In addition to the pressure forces and moments just
% y=bsin n s wr sinf cosw; smb sinw sim o=r s gopsidered, due to rotation about 2, a viscid fluid exerts
ﬁ,:“;,;‘,,,ﬁ:;’f:g;i;w; e aavabsta s " surface friction symmetrical about the z axis, but not

treated here.

For any surface S, clearly (9) still holds and (10) can be generalized to the usual form
N=f Splede—ydy)de. o (10

GeoMETRICAL ForMULAS.—Most of the surfaces treated in this text are members of the
confocsl elliproid family

b e 22 LA
e B A A ()

whose semi axes are ¢’ = fa?+ X, eto. The following known properties are needed.
The distance from the center to the tangent plene at the point (z, ¥, z2) of @’b’¢’ is

|
o) N — (12)

The direction-cogines of the normal to said plane are
. A (13)

+'Tie tadius of the latitude circle is denoted by zp=g0.
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The partial derivatives of \ are

2N An '
ax~ e gy 2k

red)
s}

More generally for any surface f{x, ¥, 2) =0, one knows

A
'—é- = 2?1?13 b_n ] (14)

S A A (AR AR A
=iy M35, iy i=[\&:) T 5y '['(az | e (130
and the distance from the origin to the tangent plane at (&, y, 2) is
' he=letmy+ns=r co8 ¥o i o (12)

+ baing the angle batween the radins vector » and the normal.

Conventions.—In all the text x, %, z have the positive directions shown in Figure 3,

as also have the &, ¥, z com- v
ponents of velocity, accelera-
tion, force, linear momentum.
The angular components
shout 2, %, 2z of velocity, ac-
celeration, moment, momen-
tum are positive in the re-
spective directions v to z, 2
to x, # to . The positive
direction of a plane closed
contour 8 s that followed .
by one going round it with i

the inclosure on his left, as _ TR
in Figure 2; the pesitive
direction of the normal =
is from. left to right across s;

1%&%

ot
I]"hl’ :
FIGUEE 4.—3treamlines for &-%953, with ingrements & =2, for fuid rotaling with aniform

sngular velooity D=—1

and s, on determine the positive directions of the tangentisl and normsl flow velocities ¢,
- ., 88 previously stated. For s closed surface dn is positive outward and ds is positive

in the direction of one walking on the outer surface with n on his left.

The word “displaced fluid,” used in treating the motion of a submerged body, usually

means fluid that would just replace the body if the latter were removed.
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FLOW AND FORCE EQUATIONS FOR A BODY REVOLVING IN A FLUID

PART 1
VELOCITY AND PRESSURE

(A) BODIES IN SIMPLE ROTATION

Evvirric Cyuinper.—For an endless elliptic cylinder, of semiaxes a, b, ¢ {= «), rotating
about ¢ with angular speed &, in an infinite inviscid liquid, otherwise still, one knows !

o= —m Ray= —%m’cnca'b’ sin 2% Y= ——%m",ﬂ,a’b’ O Py . {15)
Y
//
3
A0

ST

WA
’(/'ao

- x
Fravre 5.—5ireamlines for endless elliptic eylinder rotating about its long axis with unlform avgular veloeity ¢ shows &ﬂ—-% whfa b
i

008 2y With inerements A ¥ =2, =1, For inside fuid, ¢ = ~F T T -

the geometric symbols being as in Figure 2.  For any outer confocal a’}’ the potential coefficient
has the constant value

mle= (a4 b e =8 2 e ) . (18)*

On the model's surface a’ =g, ' =8; m’' .= (@*—b*)/2ab.

The equipotential lines on either surface ab or «¢’d’ are its Intersections with the corre-
sponding family of hyperbolic cylinders ay—= — o/m’ B=const. Normal to the equipotentials
are the streamlines ¢ =const. Graphs for y =0, 0.2, 0.4, ete., are shown in Figure 5 for a model
having a/b=4. They are instantaneous streamlines, and form with the model a constant
pattern in uniform rotation about ¢ in said infinite liquid.

At any outer confocal @’d” the velocity components are, if x=m".a'b'2,,

q’,=%——xcos 21 % q’,=%‘i—'=x'sin 27 %-—g'; 12:1 107 SN (19

U Proofs of (15}, (2), (28}, (403 ase found in books: e. g., Lemb §§ ¥2, 104, 110, 115, 5th ed., axcept that Latab reverses the sign of 4, v.
. oo, _fe ehafizey'_en " e : b T "
* Kquivaleat 0 (36) is = £, . JWJ G & ¢ being the eevmtrcities of @b, a0 O b thia becomes = e/VITT, Sae (49
for the six potential coefficients mq, iy, M My 'y W', 0 the valus of » for mors general wotlon.
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where dy/ds =1/’ /1 —e? cos®y, as one easily finds. Alternative to (17) are

¥

gi=—m sﬂc%wr —m’ 2 cos (8+4) ga=—@stan2q. . ___.___(17)
Thus for =0, 45°, 90° (17} and (17,) give ¢'./Q,= —m',a", o, m’ B, At the model's surface,
where m’, = (a2~ 82)/24b, (17,) become

R d2_ 52

g'v=— =5 Qr cos (0+8) a=Rrsin $—8) . (173}

the latter being %,2,, as in (5).
Where ¢’,=0, or cos 5=1/+/2, viz, at the stream poles, clearly x=o//V2, ¥=0"/4/Z,
O T (18)

a rectangular hyperbola. (18) is the instantaneous polar streamline, e. g., Figure 5, orthogonal
to all the confocal ellipses. Its asymptotes are y= +; its vertices are atw= L ae/+/2; it culs
each ellipse where #fy=0a'/b’, viz, on the diagonals of the eircumscribed rectangle. For an
endless thin plate of width 2a the poles are at y=0, a= :a/+/2.

Superposing —Q, on the body and fluid, and using (2), changes {(15) to

=% (FP—m'a'd eos ), o .. {19}

Its graph, with A¢=0.2, gives the streamlines in Figure 6 for the flow @, = —1 round a fixed

cylinder having ¢/b=4. About the point (0, 1.45) in Figure 6, is a whirl separated from the

outer flow by the streamline ¢ =4.25. This line abuts on the model at the inflow points 4, 4;

spreads round it and emerges at the ouiflow points o, 0.2 The streamlines for an endless thin

rectangle having =0, ¢=1, are similar to those of Figure 6, but infinitely crowded at the edges.
The superposed particle velocity — 2, contributes to (17,)

g'i=—Qrcos §—8)=—hR2, ¢ == sin 0—B)=—F Qe eeeeeeam (20}

alsog’’y =g’ tan (#—8). Adding (17,) and (20) gives the components ¢;=q", + ¢, g =¢"n+ ¢ n,
of the resultant flow velocity at any field point. One notes that (20) are the reverse of ¢, g,
in Figure 1.

In particular 4, =0 on the fixed model and 2, ¥ axes; hence there

g/ad. = —-E-[m’a cos (8+f)+cos (#—8)) glge=m' eos B+8)+cos (8—8)_____ (21)

Thus g/go=14+m', on the2 axis; 1—m’. on the y axis: and 1 at « where m’.=0. The dashed
line in Figure 6 gives g/aQ.= — (1-m’ Jyja for points on the y axis; it crosses y at the whirl
center where ¢ =0, viz, where m’,=1. By (16) m/,=1 for the surface of any model having
#b=1++/2; and there is no whirl if afb< i+ 2. Figure 7 shows ¢/a®, for the surface of a
model having a/b=4, m', = (a®— %) /2ab=15/8,

Putting ¢*/¢% of (21} in, (1,), where r*/a* = cos®y/cos’B, gives

p[—zl-pa292,=(1 —[m', cos (84 B} +cos (§— YD) cos? n/cos® Bem o nvmuncn - (22)

which is grapbed in Figure 7 for a model having /b =4.
integrating p,%pazﬂ’,, as in (8), gives for an inviseid liquid Y=0=N; X0. Figure 7

delincates X for this case.

i The poins f, o are identical with those in Figurs 5; viz, where the slip speed g in (21) is zero; they are called stop polnts, stagnstion polots, ebe.
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For the surface of an endless flat plate (3=0, o= =) fixed in the stream —, clearly
m’ .= af2b and gonerally r cos (§—pgy=0; hence (21) gives

gfal,= ~2—rb cos (f+B)=—sinfcosgoot 2y ____.____. (21

which equals — e, 0, 1/2 for 4=0%, 45°, 00°. The flow resembles that in Figure 6; it has
twin whirls abreast its middle, stop points at 2= +&/+/2, and infinite velocity at the edges.
Putting in (1;) r=2 and g,= —«Q, gives the plate’s surface pressure
o

1 2 2 .
P/gﬂazﬁf—c?—ﬁ%-f {1—cot? 29) COSZ N - oo vnmnrcmmmanmnn (22))

FIoURE 6 —Stréamlines about endless elliptic cylinder fitad in jnfivits inviseid lignid retating sbout its long aris with unifrm angular speed —;
shaws i«-% O (re=1'y @ ¥ 08 2n} with inerements A =1, i=—1. Dotted line perirays +-wise speed on § axis

which equals —1/4, 1/2, — « for =190, £a/+f2, La; viz, for n=090°, 45°, 0, etc.
Prouate Seaerorp.—For a prolate spheroid, of semiaxes &, B, ¢, rotating about ¢ with
speced Q. in an infinite inviseid liquid,

o= —m’ Qpy= «-%m’;ﬂ,a’b' SIN 2 HCEOS @ _ o e {23)
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¥,
e

ure-force per Ut leng® Xl pa®

I

3
'

Surface pr'es.saf'é, p,'i-poa,‘a‘

}——

Surface velocity glof
|
1

5

=50

FIoURE T—Endlass elliptic eylinder fixed in infnite inviscid Jiguld uniformly rotaticg sbout it; shows (1) ¥-wise
o0& pressure-lores, X;’% p @ % (2 surface velocity gfal and suxfece progsre, pf% p &1 0%, above or below urdis.
turbed local pressars in uniform strecm, —92
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the geometric symbols being as in Figure 3. For any outer confocal spheroid o’d’¢’ (23) has
the known constant potential coefficient '

3 jog LT _g_ €2
. 8¢ 1—¢' 1-¢*
mi = 1¥e O e N (24)

3 '] - - —_—
2_3(2_8 ) ]ogl_e—6+1 —
¢, ¢’ heing the eccentricities of ¢b, a’d’. Table IV gives surface values of m’, for various shapes
of prolate spheroid.

In the y=z, =x planes ¢=0; in the ry plane, where cos =1

o= —%m’,at&’b’_ sin 2n Y= —}Qm’,ﬁca'b’ COS 2% o eoo_-. 23y

which, except for m’,, have the same values as (15), entailing the same polar streamlines (18),
The equipotentials on a’b’¢’ are its intersections with the family oy = — o/m’ 2, =const.
At any point (2, ¥, 2) on a’d’e’ the orthogonal velocity componenis arve by (23)

o208 dedy L dpde
P dn 7224 ds, To=pads, "~

5n, 8s,, &, denoting line elements along the normal, meridian, and circle of latitude, as in
Figure 8. Since ¢, is absent from (1), we shall not need it; we merely note that on the modei’s

- gurface it is rQ, sin (#—B) cos w. By geometry do/ds,=r cos (§+8)/a’l cos 29} dw/ds,.=

1/ sin 4; hence
g n=—m' 27 cos {(§+5) cos w Fuo=m' Qrcos Bsin w_ .. ______.. (25}

For w=0, ¢’ (=¢'y} differs only by m’, from (17;) for an elliptic cylinder; also r cos 5=z .°
¢'o=m', xk, sin w=0, m’ 0, for w=0, 7/2. '
Superposing — £, on the above system adds to (25,), as easily appears

g = —Rr sin (§— 8) cos w ¢ y=—Rrcos (F—f)cosw ¢ =8, cosfsinw--.(26)
At the now fixed surface and on the z, ¥ axes ¢.,=0=¢",+¢"»; hence summing (25.}, (26)
gives there : ,
gy= —[m’ cos (8- 5} +cos (8 — B)] Qor cos w=T, c05 @' o
o= (14 )27 cos 85l w=7, sin w nemessemmnesmmcmmes

Thus for w=0 clearly g/go=m', cos {§+8)+cos (#—p8), differing from (21} only by m’,; for
w=xf2, ¢fge=—(1+m’;), a formula like that for a negative flow g, across & eylinder; for «=0°,

90°, 45°, ¢=1,, E,,,\/% (@%+ @) Omnthe x axis ¢/go=1+m',; on the y axis ¢/gy=1—m' >0

everywhere, hence no whirl centers on .

Figure 8 shows |¢/ef,| on the meridians @ =0, +45°, +90° of a fixed spheroid with ¢/b=4.
Distributions symmetrical with these occur on the opposite half of the surface. Noteworthy
is g for w= £90° By (27)itis ¢= = (1 +m )2x; hence the straight-line graph in Figure $.

Figure 8 shows also, for these meridians, the pressure ¢omputed with the working formula,
derived from (1,), (27).

i P 4 o8t w+ B SINC @ - o e {23)
§Pa2925
VE. g., by (2) d%u”ia‘:_n‘ %a’b"sln 2 008 o} iz, 7 08 (FB)ma'b! 005 Uy :T':,’ which gives STT, Is 23, Also directly g*w-%-

—W':&E‘q--ﬂf- — 1t afer cos (043) com o,
]
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where A= (1—[m’; cos (6+8)+cos (§—B)F) cos™fcos®8, B=—m’ (24 m’,) cos’y. Here m',=
689 by Table IV. The crosses and cireles, giving experimental values taken from Reference 3,
show good agreement with (28) for a considerable part of the surface. For cos =0, pec Bocg?;
or the graph is pa.rabohc

Integrating p, as in (9}, (10), gives for an inviscid liquid ¥=0=N, X=0. Figure 8 porirays
X computed from theory and expenment

Erresorn.—For an ellipsoid, of semiaxes ¢, b, ¢ along z, y, #, rotating about ¢ with speed
£, in an infinite inviseid liquid, otherwise still,

which for any outer confocal ellipsoid ¢’ ¢, has the constant potential coefficient

_bz
@) — (@) By~ """ (30)

m' .= C(B—a) (=

the Greek letters being as in Part V. Surface values of m’, are listed in Table IV,

By (29) the equipotential lines on &’¥¢’ are its intersections with the hyperbolic cylinder
family 2y = — ¢/m’ ,—const. The orthogonsls to ¢ const. at the surface a’d’c’ are the stream-
lines there. These by (31} are parallel to @ where 2=0; paiallel to y where y=0; normal to
2 where 2=0. The sanie obviously holds for spheroids and other ellipsoidal forms.

In the oy plane the flow hes the polsr streamlines (18); also it has there

o= —%m’cﬂca,’b’ sin 2y ¥= -h%m’cﬂcd’b’ €o8 2 . 29,)

whence the streamlines in that plane are plotted. The form of (29,) is like those of (15) and
{23,), for the elliptic c¢ylinder and prolate spheroid, entailing similar expressions for the velocity .
and pressure in the plane-flow field z=90.

For the general flow the velocity components at a’d’c¢” are by (29)

. _{.om, oo,
w'= (w py & w=—0ay—t (31)
and those due to the superposed velocity —R2.K=¢,, are
wr=0y o= -0 W= ... (32)

whence the resultant velocity and pressure may be derived for all points of the flow field about
the ellipsoid fixed in the steady stream —Q.R. In forming the =, ¥, 2z derivatives of m’, one
may use the relations (14) and (72).
Everywhere in the planes =0, ¥y=0, the resultant velocltles are respectively, by (31)
and (82},
g=u={1-m",)Qy g=e=—(14+m' )0z .. . __._. (33}

while in the plane z=0, ¢ can be found as indicated for an elliptic éylinder. " (33) apply also
to the elliptic cylinder and prolate spheroid prevlously treated, and to all other forms of the
ellipsoid fixed in the flow —%..

{B) BODIES IN COMBINED TRANSLATION AND ROTATION

Most GeEnERalL Morion.—The most general motion of any bedy through a fluid may
kave the components U, V, W along, snd ., Qs @, about, three axes, say ¢, 3, ¢. The entailed
resultant particle velocity ¢’ at any flow point is found by compounding there the individual
velocities severally due to U, V, W, Q,, 2,, 2, and computable for an ellipsoid by formulas in

Reference 2 and the foregomg text.

Yawmng Friear—In airship study the flow velocity ¢’ cau-sed by & prolate spheroid in
steady circular flight is gpecially interesting. Let the spheroid’s eenter describe about 0,
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Figure 9, a circle of radius ne, with path speed ne®. Then if o is the constant yaw angle of
attack, the component centroid velocities along «, &, and the steady angular speed about ¢ are,
respectively, _

U=natl cos a V=nall sin o I (34)

If, now, velocities the reverse of (34) are imposed on the body and fluid, ¢.=0, and the
snrface velocity ¢ on the fixed spheroid has in longitude and latitude the respective components

g,=(+k 30 sin 8~ (1 +%&,) V cos # cos w—[m’, cos (84 5)+cos (B 31 cos w}
go=(1+ky} ¥ sin w+ (1+m’ )2 cos @ sin w

where positive flows along ds are, respectively, in the directions of increasing v, w, as in Fig-
ure 3. The terms in T, V, are kmown formulas for translational flow, . g., Reference 2; the others
are from (27). Hence ¢* then p is found for any peint (8, «) on the spheroid.® If @, is negli-
gible, g=7 sin ¢, where @=(1+k) U+ (1 +%,)* V%, and ¢ is the angle between the local and
polar normals, as proved in Reference 2.

Figure 9 portrays, for specified conditions, theoretical values of pf%pQ*, ¢ being the path
speed v UF+ ¥t of the spheroid’s center; it also portrays p}%pQ’ for the model in rectilinear

motion, with @ = . The difference of p,%pQ” for straight and curved paths, though material,

is less than experiment gives, as shown by 9;. Fuller treatment and data are given in
Reference 3.
The forces X, ¥ and morent N, for any zone, may be computed as before; but for the
whole model they are more readily found by the method of Part IV. Zonal ¥ and N for a
_hull-form are found in Part 111
The first of (35) applies also to an elliptic cylinder, with cos w=1, m’, = {g*— b*)/2ah.
Fixed in a flow — U, — ¥, —#&,, it has the surface velocity

¢=(1+8/a) T sin 8— (1 +a/8) V 008 a—[“';—;gg c0s (6-+§)+ cos (8—18)]!201' ........... (36)

For an endless flat plate 5= 0, cos 8="5/a. sin ¢ cot 1; and the last term of (36) may be rewritten
by (21,); thus {26) becomes
g={U—~-Vootg—aQ cosycot2pysin & ____________________ (37)

These two values of ¢ with (1;) give the pressure distribution over an elliptic cylinder or flat

plate revolving about an axis parallel to its length or fized in a fuid rotating about that axis.
Thus -an endless plate of width 2«, revolving with angulser speed ©, path radius na, and

incidence o, ag in Figure 10, has by (37) the relative surface velocity, viz, slip velocity

g/a={n cos a—ngin ¢ cot p—cospeot 2y sin d_____ ______________ {(38)
and since sin =1, ¢ = T*+ (V4+o0)? =20+ 2n sin & cos 5+ cos’}, (1) gives

p,r’%pa*ﬂz=n2+2n sin & cos g+ eos I—n® (cos a—sin o cot -r,-—% cos oot 2ny_ oL __ (39)

For #=3, «=30°, Figure 10; delineates the distribution of slip velocity ¢/aQ on both sides of
the plate; 10, that of the pressure p}'% pa*¥ on its two faces. This pressure integrated over

the plate’s double surface gives I'=0, as may be shown. The dashed line in Figure 10, is the
pressure-difference graph whose integral for =0 to = is also zero. The resultant forces X, ¥
and moment N for such & plate are found in Part IV by & method simpler than surface inte-
gration of the pressure.

! Here again ¢ 35 the Elip spaed of the Aow at any peiot of the body's soeface, and depends coly on the reative motion of body and Anid.
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Frow InsipE ELLipsorp.—At any point inside an ellipsoid with speeds U, V, W, ,, ©,,
£, along and about ¢, b, ¢, filled with inviscid liquid otherwise still,

. b —et &= =B
o= Vot Vy+ Wert = Qa2+ oy @2+ i Qaty oo (40)

258
1704"--..\‘

.02 .
.02 \
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L A LA LA S e e |
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o

¥iarEE 9.—Frolate apherold in steady yawiog Oight. (1) Defines  FIGURE © (contizued).—Far tonditions (1), (4} delinestes pressure load per vuit
velocity comditicns; (2) delineates theoretical pressure dis- ¥ngth; (5] the zonal foroe; (6) the zonal moment. In (4) the full gnd doted lints
tribntion: (5} exporimentsl prassura distribntion for §= 40 feet give theoretival values from aquations (i), (M)) the Gashed line, experimental vallis
pe second. To (2 and (3, full lines iondiate rectilinesr, from reference 3. (5) is obtained by planimetring {4}; (¢} by planimetring ()
desbed lnes curvilinear motjon

whose coefficients are constant for the whole interior. Hence the components of the particle
velocity ¢ are

-— R A_ RS
¢ %Qw+%;%ag ........................ @1y

O _ . _
S U7 U+cﬂ +a
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and like values for v, w found by permuting the symbels. If the fluid were solidified any
particle would have

=T+ Qpz—Quy, 068, 60 ol ccec e ae (42)

Thus when an ellipsoid full of inviseid still fluid is given any pure translation its content moves
as a solid; but when given pure rotation each particle moves with less speed than if the fluid
were solidified, since the fractions in ¢{41) are less than unity.

For velocities ¥, V, R, of the ellipsoid

2 2
o= Tt Vit S ga @ oo PR 43)

T
=1

T

b

in
iHererce be-

B
8

Lawer surifoce
T T
8 5
Pressure di

e/

c..%m
z
\

I
I

fower surfaoce
)
E-N
Upper surface
] I I \
1 ] )
B &8 & 3
wrfoce pressure, pi pa M
ipper surfoce

- =30 %
FigueE 10.—Eadless Aat plate revelviog ebout axis parallel to its keogth, I infinite iovizeld fluid. (1) Defines conditions; (2) delinestes
relative veluoily ¢fa 2 of Buid; (3) presoars pr—%- # 6t 2%, and presoure difference & p,% # a2 1 on two faces of plate

for which w=2¢/dz=0. For this plane flow (4) with (4¢3) gives

1. a—-F
R e 1 ) (44)
whence the streamlines may be plott.éd. In particular if the model has simple rotation 2.,
2 2
-y = _222t§2 YfRe=comst. o eeeo ... {45)

and the interior streamlines are hyperbolas, as in Figure 5.
Adding (2) to ¢ in (45) gives the steady flow

Q.
T e {48)
hence the streamlines lie on the elliptic oylinders
afpt+ bt (P D) QA =const._ . _ . ____.__.______ e (4T)

104897—30——28
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By (46) ¢=29.(a*y" + b)Y/ (e’ +b?), which put in (1) gives at {», y), since go= — 2.8,

e
= 2 @9)

where p.=0¢’/2. Here p, is the centrifugal pressure due to the fluid’s peripheral velocity
¢, and p is the pressure change due to ¢, —¢, ¢ being the relative velocity of fluid and container.
In & like balloon huil ¢ would quickly damp out, leaving only p, as the dynamic pressure. At
the ends of a, b, ¢, respectively, (48) gives

Pa—P_ 4h* 4at 0.
Py @+ @+0HY

For large a/b the first is negligible, the second approaches 4, giving p=—3p,= —1.5p0,7% az
the temporary dynamic pressure drop inside the hull at the end of 5. Experimental proof
would be interesting.

PorextiaL CoEerricients.—An ellipsoid of serniaxes ¢, b, ¢ along =, ¥, 2, when moving
through an infinite inviscid liquid, otherwise still, with velocities U, V, W, @, @, ., along and
about the instantaneous lines of a, 8, ¢; begets the known velocity potential

p=—meUo—mVy—m We—m' Quyz—m' {pze—m' Qvy_ . ___. (49)

the six potential coefficients m being constant over any outer confocal ellipsoid a’b’¢!. Their
values for abe are given in Tables ITL, IV. Alternatively (49) can be written for this surface

]
o=~k To— ko Vy— kW st % 0 s T WS e T PR 50)

the ke being the more familiar inertia coefficients defined and tabulated in Part V. Of the six
Potential eoefficients in (50) the first three are the same a3 the inertia coefficients k,, k,, k.;
the last three are greater except when ¢/b or g/c or bfa is zero. Thus, if b/a=10 the last term of
{80) is — &’ R 4oy, which is the potential on the outer surface of an elliptic ¢ylinder {(¢= =) rotating
about ¢. Everywhere inside of it the potentinl is Gay, as (40) shows.

For the flow (40) textbooks give the inertia coefficients

bﬁ,_ -2 —ad
kos Boy Reo=1 k'o=tm{fz (cg+gg eboo ... {51}

which are the squares of the potential coefficients. One notes too that the ratios of like terms
in {40), (50} equal the ratios of like potential coefficients and like inertin coefficients, which
latter in turn are known to equal the ratios of like kinetic energies of the whole outer and inner
fluids, if the inner moves as a solid.

Revarive VeLocity anp Kineric Pressurs.—When a body moves steadily through a
perfect fluid, otherwise still, the absolute flow velocity it begets at any point (&, ¥, #), being
unsteady, is not a measure of the pressure change there. The relative velocity is such a measure,
To find it we superposed on the moving body and its flow field an equal counter velocity, thus
reducing the body to rest and making the flow sbout it steady. The same result would follow
from geometrically adding to said absolute flow velocity the reversed velocity of (x, ¥, #) assumed
fixed to the body. In particular this process gives for any point of the body’s surface the wash
velocity, or slip speed, which with Bernoulli’s principle determines the entailed change of surface
pressure. Conversely, if the pressure change af a point is known or measured, it determines
the relative velocity there. In hydrodynamic books the above reversal is used commonly
enough for bodies in translation. In this text it is employed as well for rotation; also for
combined translation and rotation. However general its steady motion, the body is steadily
accompanied by a flow pattern whose every point, fixed relatively to the body, has constant

relative velocity and constant magnitude of instantaneous absolute velocity and pressure.
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PART 11¢
ZONAL FORCES ON HULL FORMS!

PressvrE Loaping.—For a prolate spheroid ade with speeds U, V, Q,, Figure 9;, or fixed
m a stream — U, — V, —Q,, (35) gives at (x, ¥, z} on abe the relative velocity

=g tqgl=A—Becoswtcos’w

A, B, € being constant for any latitude circle. In forming this equation one finds

B=2(14+k)Usin 6{(1+%,)V cos é+[m’, cos 6+ 3)+cos (0— B)r2.},
ete., for 4, C. In the hody’s absent;:e said stream has, at sald peint G, v, 2),

¢’ ={— U+y2 )+ (— V—2Q.Y=4,— B; c0s w+ ) cos® w,
where « alone varies on the latitude circle. Its radius being y,= z,, makes y =1y, c0s o,
B,=2U24,,
etc., for A, ¢.. Pufting ¢, ¢ n (1) gives the surface pregsure
plEp=gt—¢*=(4,— A)+ (B—B,) cos w+ () — ) cos® w.

' 2« o
By (10} the loading per unit length of « is, sinceJ; cos w=10 =f cod® w,

Ar x . l
Pl5s=— %L P 008 wde=— (B—BIJEOJ: cos? wdw=—a{B— B¢ o ... (a)

4, 4y, €, ¢ vanishing on integration of p. Thus, finally,
Plopf=—a(B—B)af@ . (a1)

P having the direction of the cross-hull component of p at w=10.

One notes that gi(e« sin’ w) contributes nothing to B or the integral in (a); viz, the loading
P is unaffected by ¢., and depends solely on. g,, the meridian component of the wash velocity.
Also for =0 and v, B— B, =0=P.

In Figure 9, the full line depicts (a,) for the spheroid shown in 9,, circling steadily at 40
feet persecond. The theoretical dots closely agreeing with it are from. Jones, Reference 3, as is
also the experimental graph. Beside them is a second theoreticel graph plotted from Doctor
Munk’s approximate formuls derived in Reference 8§ and given in the next paragraph. But
that Professor Jones omitted some minor terms in his value of p, his theoretical £/.5p6* should
exactly equal (a;). His formula, derived by use of Kelvin's p./p=&—¢*/2, can best be studied
in the detailed treatment of Reference 3. '

In Reference 8 Professor Ames derives Munk’s airship hull formula

P . 24d
.--5;)@=sm e j‘—ikﬁ(l—x(xS),

1 This part wag added alter Par}s L IL IV, V were typed; hencs the special numbering of the equations.
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§ being the area of & cross-section; R the radius of the path of the ship’s center. This was
assumed valid for a quite longish solid of revolution; for a short one it was hypothetically
changed to

g tn—kasinza Por 2 S d) . ®)
Applying this to & prolate spheroid we derive the working formula
%= Y by
where the constants for a fixed angle of attack are?

L=20ky—k) %+ 5 sin 2 M=31".2% 27 os N=W
5 o) 3 ¥ sln 2a, = ‘2" B 038 «, Rcos o

Plotting (by) for the conditions in 9, gives the dotted curve in 9;,. It shows large values
of P[.5pQ? for the ends of the spheroid, where (&) gives zero. To that extent it fails, though
with little consequent error in the zonal {orce and moment at the hull extremities. It has the
merit of being convenient and applicable to any round hull whose equation may be unknown
or difficult to use,

Zonar, ForcE—An end segment of the prolate spheroid, say beyond the section =,
bears the resultant cross pressure

which with the resisting shear at @, must balance the cross-hull acceleration force on the seg-
ment in yawing flight. For the whole model (b)) with (c) gives ¥'=0, which is not strictly
true for curvilinear motion; but {a) with (¢} gives the correct theoretical value of ¥, and
agrees with (67).

In Figure 95 graphs of ¥/.5002 for the values (a,) and (b,) of P, are shown beside those
derived from Jones’ experimental pressure curve. Since ¥ is proportionsl to the ares of a
segment of the graph of P, it can be found by planimetering the segment or by integrating Pda.

ZonanL MoMENT.—The loading P exerie on any end segment, say of length a-x, the
moment about its base diameter z

N [va

which can be found by planimetering the graph of Y. Figure 95 delineates &, so derived from
the three graphs of ¥. They show the moment on the right hand segment varying in lengih
from 0 to 2a; also on the left segment of length from 0 to 2¢. The resisting moment of the

. cross section must balance N, and the acceleration moment of the segment.

CorrecTioN Facrors—No attempt is here made to deduce theoretically a correction
factor to reconcile the computed and measured p. In Reference 3 Jones shows that the theo-
retical and experimental graphs of P[.50Q% have, for any given latitude x> /2, the sane
difference of ordinate whatever the incidence 0<Za<720°. Thus the ordinate difference found
for the zero-incidence graphs, when applied to the theoretical graph for any fixed 0<la<C207,
determines the experimental ohe with good sccuracy. Such established agreement in loading
favorably affects, in turn, the graphs of ¥, N, the transverse force and moment on any end
segment of the spherotd. :

*From the meridian cozre —-~l- b’ % —:, w Swmat; bence d—s-%w%— —2=r - % which put in (b} leada to (b,
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FART IV
RESULTANT FORCE AND MOMENT

Bopy 1w FrEE SpacE.—Let o homogeneous ellipsoid of semiaxes ¢, b, ¢ move freely with
component velocities o, #, @, », g, r! respectively along and about instantaneous fixed space
#Xes 2, ¥, 2 coinciding at the instant with @, b, ¢.  Then the linear and angular momenta referred
0%, Y, £are

Myt mu mw Aip B O e e (52)

my being the body’'s mass, A, Bi, €, its moments of inertis abous ¢, b, ¢. If, now, forces X,
¥, Z; and moments Ly, M, N are applied to the body sleng and about @, ¥, 2, they cause in
the vectors (52} the well-known change rates

my(b—ro+gwy =X, Ap—(Bi— O)gr=1L,
mp—pwtru)=Y, Bg— (O\—Ayrp=M, } o . (63)
my(b—gqu+pry=2, O — (A —Bpg=N,

which apply to any homogeneous solid symmetrical about the planes ab, be, ca.
For motion in the abd plane; viz, for w, p, ¢=0; (53) give

Xi=ma(d—ry} Yi=m(@+ru) M= oL (54)

and for uniform revolution about an axis parallel to 2, as in Figuré 11, viz, for %, 9, #=0, (54)

become _
X|.= — e Yl=m1m N1=0 ---------------------- (55)

where now X,, ¥; are merely components of the centripetal force m,»+/u?+ 1%, whose slope is
Y/ X =—wufo. Alsoif @=+uf+®is the path velocity of the body’s centroid, & its path radius,
r=Q/h is the angular velocity of h and of vector m,g.

REeactions oF Fruip.—If external forces impel the ellipsoid from rest in a quiescent fric-
tionless infinite liquid, with said velocities w, #, w, p, ¢, 7, they beget in the Auid the corresponding
linear and angular momenta

komai ymo kanw K Ap & »Bq B olr . (56)

where m is the mass of the displaced fluid, and A, B, ¢/ its moments of inertia about a, b, ¢.

One calls Z,m, kym, kn the “ apparent additionsl masses’; k’,4, &',8, k' .0 the “ apparent
additional moments of inertia,” of the body for its axial directions; because the fluid’s resistance
to its linear and angular acceleration gives the appearance of such added inertia in the body.
The six &'s are called “inertia coefficients,” and are shape constants. Values of them are
given in Tables ITI, VI, VIII for varions simple guadrics.

The component flow momenta (56), like (52), are vectors along the ingtantaneous direetions
of a, b, ¢; viz, along, ¥, z; hence their time rates of change must equal the forces and moments
which the bhody exerts on the fluid; viz,

X =m0 —Tpro+ ke qw) L=F Ap— & Bk .C)gr — &p— R ymow
Y=m(ew—kpw+kru) M=k Bi— k' O~k Ayrp— k. ~kymwu | .___(37)
Z=mk b —Tqu+ k) N=k'.Cr— & Ak Bypg— (ks Fk)mup

' These now meanings of v, v, 1, ¥, ¢, ¥ ar¢ assigned for convention's sake and for conveonience,
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all written from (53) on replacing its momenta by those of (56}, and adding vector-shift terms,
Thus the vector & mw shifts with speed » entailing the change rate &k mw.v of angular momentum
about 2, while k,mp shifts with speed w entailing the opposite rate—kymev.w. Their sum is
(k.—ky)mmw. Permuting these gives for the y, 2 axes (k. —k.)mwy, &y—kJmue. When the
k’s are equal the vector-shift terms vanish, as for said free body, or for a sphere, cube, etc., in a
fluid. The fluid reactions are (57) reversed. (57) apply also to fluid inside the trisymmetrical
surface.
If the angle of attack is «=tan~'zfu, we may write in (53), (57}

réth. =4 cos p=4@ sin o uv=%Q* sin 2e-_ ... _____. (58)

————————————— -jkmu.!‘

N

=

'
3
L]
!

Kr/ @ mu

e

/

FIGURE 1l.—Momenta aad forces for free bod¥ 10 upifoem circulat inotion.  Centripetal fores, Ri~mQr=

WQ3fh, had slops —ufe, ¥ heipg angulsr speed about ¢

Of special aeronautic interest are (57) for plane motion, such as in yawing airship flight.
for which w, p, g=0, giving

X =m(ca—kyre) Y=mk +Farw) N=F OF+ Fp—kadmup. oo (30
Thus for uniform circular ﬂi_ght
X =—lkymre Y=Fkunru N={e,—kdmur. oo {0}
which are the analogues of (55) for the free body. Or in notation (58)
X=-E 0 din A reos e Mokt 2a. ®1)

r being the volume of the modsl.
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As shown in Figure 12 (60) give the resultant force aknd slope
R =kl T 1,0 Y/X= —}—: cot a=—cot B_____. R (62)

alse K and N at the origin are equivalent to & parallel force B through the path center 0, aleng
a line (called the central axis of the force system) whose arm and intercepts are

I=N/B=}%sin (5—a) g=[ sec 3 y=lcosec B __ . ____... : .-(63)

!
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F1GURE 12.—Xloienta and forces for symrneirieal body io unilorm cireular motion tbrough Irictloniesa infAnite
liguid otherwisa at rest. Whole hydrod¥nemie force, R=mr 'kt wi4ks? o, has slope —k. 4k 8. Yaw
Faad

mothent Ne(ki—fs) muva(ba—4a) + 55 sin 2a, 7 belog volume

For steady motion (60) show that the body sustains né force in pure translation (r= 0};
no force nor moment in pure rotation (¥, $=0); no moment in revolution about a point on
rory; viz, for u=0, orp=0. For given u, » the moment is the same for revolution as for pure
translation. The forces result from combined translation and rotation; the moment from
translation oblique to the axes 4, b, irrespective of rotational speed.

CousivaTion oF AppLied Forces—To find the whole applied force constraining a body
to uniform cireular motion im & perfect fluid (55), (60) may be added, or graphs like those of
Figures 11, 12, may be superposed. . For an airship having m,=m, (55), (60) give

X=— (1 +k)mor F=0+komur Ne={y—kmuo. ... ___. (64)
‘T Writing Rar@mFa t0sia FF 5 5z wo may call it the ceairipetal force of the apparent Mass w+EF G0 TRy Silfa for the body direce
ton of Q.

+

219



220

REPORT NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS

where X=X+ X, etc. Figure 13, compounded of Figures 11, 12, shows that a submerged
plane-force model, revolving uniformly about its path center, may have as sole constraint a
single force B through that center, and outside itself; that is attached to an extension of the
model. Such conditions appear commonly in vector diagrams of aireraft. The line of R, so
defined, is the central axis of the force system.

HYDROKINETICALLY SYMMETRIC ForMS. —Equations (56}, (57), for trisymmetrical shapes,
apply also fo others having hydrokinetic symmetry. Examples of these are: All surfaces of
revolution, axially symmetric surfaces whose cross sections are regular polygons; torpedo forms
symmetrically finned, ete. Al these figures, as hés been known many decades,® have three
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Fiaore 13 —Composition of farees on symmetrioal bedy in doiform eizonlar motion throogh frictionless infnite Hquid

otherwise nt zest. Resultant of centtipetst and bydrodyosmic lorces, Fe=m r ¥{I+F)T @118 7 bas slope
1+k, v

—iFE s Figure 13 is 11 and 12 ¢ompounded

orthogonal axes with erigin at the body’s impulse center,’ such that 1f the body, resting in a
quiet sea of perfect fluid, is impelled along or about either axis it begets in the fluid a linenr
or angular momentum expressible by a vector along that axis,

ExaMmpLEs —We may apply (60) to some simple cases interesting to the aeronauticsl
engineer,

(1) For an endless elliptic cylinder in uniform yawing flight, as in Figure 12, m=xpad pur
unit length, and by comparison with Table VIII &, =b/a, k. =a/b; hence by (60)

1 Sos Reference .
11, e, the point of intsrssction of Kym 7, kv V, kemW; it may be found a5 in the last paragraph of Fart v,
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X=—maorv Y=ubloru N=rla®—)p.uv=ria’— b”)pQ sin 2a. . oooo- .{65)

The resultant force mpr+a’s?+ b'f has the slope —bfu/azv— —b%fa?.cot «: the central axis is
through the path center; X is the same as for a round cylinder of radius ¢; ¥ the same ag for
one of radius &. For a good elliptic aireraft strut a/b=3; hence X/¥ = —9r/u=—9 tan «;

2
N =8w5’puv=8wb’.p—e—.sin 2. By (65) N is the same for all confocal elliptic cyl‘mders, since
a’—b? is so.
If a=10, as for a round strut, =0, R= ra“prQE and coincides with the body’s previously
feund centnpetal force to which it bears the ratio m/m;.
if b=0, as for a flat plate, (63) become
pld*

X = —natprp ¥=0 N=ratpuv= ra.’—z— sin 2e_ _ ... mmm—— (66)*

The equivalent resultant force walpro, with slope ¥/X =~0, runs through the path center
parallel o . If r=0, the plate has pure translation, with forces X, ¥=0, and moment
N=ra*pup, a well known result. X in (66), being the same as in
{65}, is independent of the strut thickness 5.

(2) For a prolate spheroid, of semiaxes a, b, 4, in uniform
vawing flight, m =4/3.xpab?, and %, %, are a5 given in Table III.
Thus for /b =4, k,, %;=0.082, 0.860; hence by (60)

X=—3.6abpro ¥ =0.34340bpru N=3.26abtpun_(67)
(8) For an elliptic disk of semiaxes g, 8, ¢, moving as in Fig-
ure 14, Table VIII gives ksm= %rpab”/E; hence by (57) the forces

and moment are

4
=—k.mpw=—~ 7 rpbz D Z=0
Frovge 14~Thin elliptic wing moving par-
= =2x4 = allel to its plane of symmaetry through &
L=kamow=2z E.ﬂ'pﬁ oW (68) oot

the other pertinent terms m (57) vanishing, as appears on numerical substitution. Here
E(ﬂ 2) sin® = (a*— b%)/a%; also L= Earvﬂ@ sin 2o. Compare (68) with (66), calling b the

width in both, _
Tueory Versus ExpERiMENT—In favorable ceses the moment formulas of Part IV
accord fairly well with experiment, as the following instances show. For lack of available data
the force formulas for curvilinear motion are not compared with experiment.
(1) By (65) an endless elliptic strut with ¢=1/3 foot, 3=1/12 foot, ¢=5 feet, held at «
degrees incidence in s uniform stream of standard air at 40 miles an hour, for which pQ*/2=
4.093 pounds per square foot, sustains the yawing moment per foot length

2
N=x={g*=1), p_g_ +8in 20=1.3392 sin 2« Db ft__ . _________ (69)

This compares with the values found in the Navy 8 by 8 foot tunnel, as shown in Table IX
{nired from Figure 16. The agreement is approximate for small angles of attack. The model
was of varnished mahogany, and during test was held with its long axis ¢ level across stream,
aud with two closely adjacent sheet metal end plates, 2 feet square, to give the effect of plane
flow.

 Bquatlons (60} were published in Referencs § os the result of & special research to determine the duid forces and momext on & revolving plate.
Tz the present text they follow as corolisries from more generat lormulas,
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(2) By (68) an endless thin flat plate of width 2a=35/12 feet, sirnilaxly held in the same

 air stream, has per unit length the moment

222

2
N=m’p§ §in Za=0.5581 sin 2a lb. ft. ... _. S S (70}

This i3 compared in Table X and Figure 16 with the values found in the Navy 8 by 8 foot
tunnel, The flat plate was of polished sheet aluminum 3/32 inch thick, with half round edges
front and rear. _
Again for an endless flat steel plate 5.95 inches wide by 0.178inch thick at the center, with
its front face flat and back face V-tapered to sharp edges, Fage and Johansen, Reference 6,

K x Theorefical /
-t Sy = )f‘

+

- f!

i 4 N Sk x Theoreticol
af 7

F 2 S
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O @é&/{”f\_\
5y e

3 os /v\fxpeﬁh'?snfa! “‘;-\v
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L.t ¥ Experimanial
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FIGURE 15.—Theoreticsl and expecimental moment FIaURE 16— Theorectical and experirental moment about long axis of endless
about long sxis of endless elliptic cxlinder. Width rectanguler plate.  Width 5 inches, air speed 40 miles per hour. Correction
% inehas, thickness 2 ibehes, ait spesd 40 miles per factor xm(0.560
four, Corvection factor «=0.912

found, at 50 feet per second and 5.85° angle of attack, ¥=0.125 pound foot as the moment
per foot run about the long axis, computed from the measured pressure over the median section.

By (66), a thin flat plate would have
r4
N=wd®. 2-2@ - sin 2a=0.1931 X 2.9725 X 0.2028 = 0.116 1b. ft.
which is 7 per cent less than 0.125 found with their slightly cambered plate.

(3) An elliptic disk 3/32 inch thick with ¢, 5=15, 2.5 inches, when held as a wing in the
Navy 40-mile-an-hour stream, had the moment L versus angle of attack o shown in Figure 17
and Table XI. For this case

sin?8 = (g® — ?) /a® = 875/900¢, 0=80°—24’, E=1.03758.

Also in (68) a=>5/4 feet, b=5/24 féet, Q*=4.093; hence

2
I-40. P 5 N —— (1)
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which gives the theoretical values in Figure 17 and Table XI. The agreement is fair
at small incidences. The disk as tested was ~of sheet alumiriim cut square at the
edges without any rounding or sharpening.

{4) Forawooden prolate spheroid .20 ;
24 inches long by 6 inches thiclk, _ | s/
carried as in Figure 12 round a circle 18 f ot x Theoretica
of radiug b =27.96 feet to the model's -6 @ .” TN
center, Jones, Reference 3, found at | 4 g y \
40 feet per szecond the values of N ¥ \
listed in Table XII. For this case gpe / \\
Table IIL gives ks—k,=0.778, and &
(61) gives E el /L——Expenmenfaf \H‘Q /_._,ﬁ
o ) gl.os
N=(ks—ks)v- 2 +sin2a=0.388 sin 2a. §
- 65
These values appear from Tahle XTT ol

not to accord closely with the expen-

mental ones. -joz
Corrzorion Factors.—Figures

15, 16, 17 portray experimental .go «go -+ -2+ | 20 & & & w° 2 0 w5 18 20°

moments, at small angles, as aceu- - ~02 Angle of g¥tack,d

rately equal to the theoretical times

an  empirieal correction factor «. / 04
Thus amended (61) gives for the 7 t-os
experimental moment f e
2

Ne=«N=ulle,—k 7+ pg * gin 2o, ?{/ 0
For the given elliptical eylinder C L2
¢=0912 Wwith —8°Ca<6% for I

the endless plate x=0.860 with - 4/ 4
—6°<La<8%; for the elliptic disk A - /6
x=0.887 with —5°<a</4%. Insuch «/ [

cases one should expeet to find the
actual air pressure nearly equal to --20 :
the theoretical over the model’s Fiouxe 17.—Theoretical and experimentsl mament shout long axis of elliptie disk.
forward Pﬂl'tr, but =0 deficient along ::;‘g;;a\) {nohes, width 5 inthes, wir speed 40 miles per hour. Correction factor
the rear upper surface as to cause a
defect of resultant moment. No effort is made here to estimate it theoretically, nor to de-
termine it empirically for a wide range of conditions.

The measurements shown in Table X, for the flat plate, were repeated at 50 and 60 miles
an hour without perceptible scale eﬁ'ect
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PART ¥V

POTENTIAL COEFFICIENTS, INERTIA COEFFICIENTS

Green's InTEGRALS.—The foregoing text employs Green’s well-known integrals, which
for the ellipsoid abe may be symbolized thus:

asﬁbcfwa% g=abec ( rbrs Y= (LZ?GJ‘ r%r)\fa ------- (72)

where o’ =+fa®+ A, ¥ =+/b*+ ), etc., are semiaxes of the confocal ellipsoid a'd’¢’, The integrals
have the followmg values, Reference 4;

a=AB—O[F9, ¢) — E8, ¢))
p=A —a?}[ 2F(9: ﬁﬂ‘)"“/ S

bz
garfb’ — E@, i"):l _______________ {73y

1«=A(a2—bz)[1f@:?&% —E(8, w)]
where

2abe PN ik L, _@=c
@-PF-jg—¢ N a-¢

and the elliptic integrals sre
F6, ¢)= S (1—sin sinte)de  E(, ¢)= S (1—sin®0 sin®p)do_ . . ._____ (75)

Numerical values of F(8, ¢), E@, ¢), @, 8, v are given in Tables I, II for »=0 and various
ratios afb, b/c; viz, for various shapes of the ellipsoid abc. For ¢=7/2 one wriles {9, )= K,
E(8, ¢} = I, by convention.

PorentiaL CoerricienTs—For motion (49) the ellipsoid abe has the potential coefficients
known from texthooks.

A-=

o F) G(’T B) _62—62
m¢—2_a0 M o= 50 o= wheve G—b——,+cg
s o H gt
=38, "= T (e o) here H cz+az ----------- ---(78)
¥ ', 18— o) =
Ky =TT~ Bo—oa) where [= H_bg

Mgy Wy, M, being for translation along @, &, ¢ and m’,, m’y, m’, for rotation about them, and
any By, 7o being (73) for A=0; viz, foro’, ¥, ¢’ =¢, d, ¢. Surface values of (76), viz, for o, 8, v=
&gy Bo, vo are given in Tables III, IV. For fluid inside the ellipsoid the potential eoefficients are
as in (40) and given numerically in Table V.

IxERTIA CoEFFICIENTS. —From (76) are derived the conventional linesr and angular inertia

coefficients
ka, ka, k9=mm My, M, ?C’a, k,h, krc=Gm’a, Hm’ By Im’c ------------- (77)

for the ellipsoid meoving through or containing liquid, as in (40), (49). Surface values are
given in Tables IIT, VI, VIL

1(73) astisly the known relation a+8+y=2abefa’l'c’, 85 appesrs oo adding.
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LiviTinGg ConpITions.—In sotne limiting cases, as for ¢=0, or ¢ =3, etc., (73) may become
indeterminate and require evaluation, as in Reference 4. In such cases the formulas in Table
VIII may be used. For ¢=0, entailing zero mass and infinite k., &’,, &'», one may use in (57)
the values of kan, ¥4, ’,B given at the bottom of Table VIIL,

Puysican Mearnivg oF THE CorrrrciENTs.—The tabulated potential coefficients, put in
{40) or (49}, serve to find the numerical value of the potential ¢, or impulse — pe per unit area,
at any point {r, ¥, z) of an ellipsoid surface.? Integration of pp over any surface, as explained
for p in Part I, gives the componert linear and angular zonal impulses. So, too, integration of
— pipifaf2, Where ¢, is the normal surface velocity at (x, ¥, 2), gives the kinetic energy imparted
to the fluid; asnd integration of the impulsive pressure —pdy/Of gives the impulsive zonal
forces and moments. One finds pde/Ot for (40), (49) by using with them the specified density
p, accelerations U, V, W, @, 9, 2., and tabulated potential coefficients for the given semiaxes
@ b, ¢

Thus putting —pp,, —pe'. for p in (9), (10,), and integrating over the whole ellipsoid
surface, easily gives the fluid’s linear and angular momenta

komW B O . (78)

where m W, 0@, are respectively the linear and angular momenta of the displaced fluid moving
as 4 solid with velocities W, @,. 'The like surface integration of — pe.g,/2 gives, as is well known,

k.m W2 RO/ et (79)

where m W2, CQ'./2 are the kinetic energies of the displaced fluid so moving. Each inertis
coefficient therefore is a ratio of the body’s apparent inertia, due to the field fluid, to the like
inertia of the displaced fluid moving as a solid.

By (49) the potential coefficients due to velocities W, Q, are

M= Wz m’ o= —¢' Ry

The first is the ratio of the outer and inner surface potentials due to W at any point z on the
ellipsoid abe; the second is the ratio of the potentisls due to @, at (%, ¥), respectively on the
outer surface of that ellipsoid and inside the cylinder of semiazes «, 3, ¢.

One notes that the momenta (78) times half the velocities gwe (79), also that the tame
derivatives of (78) are the force and moment Z, N= kW, ¥ 00, as in (57) for the simple
2-wise motions, W, Q.

For any axial surface, say of torpedo form, moving as in Figure 12, the ratio — &', 0Q./kymV
is the distance from the arbitrary origin 0, to the impulse center 0z, or center of virtual mass.
This may be taken as origin, and if the body’s center of mass also is there Figures 11, 12 ¢an
still be superposed as in Figure 13. In the same way are related the acceleration force and
moment k,m V, &' 02,, thus illustrating the doctrine that the motion of a hydrokinetically sym-
metric form in a boundless perfect fluid, without circulation, obeys the ordinary dynamie
equations for & rigid body.

AERODYNAMICAL LABORATORY,
Bureav or CongTrucTioN aND Repair, U. 8. Navy,
Wasuineron, D. C., December 17, 1928.

1 This impulse is imperted by the moving surface $¢ the Buid, otherwise stil); the fuid Ia turs texnds to impart to the body the impulse sy
per umnit sres st (¢, ¥, ).
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CHIEF SYMBOLS USED IN THE TEXT

GEOMETRICAL
@y by Coconoanaouo . Jemiaxes of ellipsoid abe,
e, b, ¢ ... ____ Bemiaxes of confocal ellipsold ¢’b"¢’. .
€y 8 e Eceentricities of ellipee ab and its confoeal a’d; ae=g'e’ =+Jai—%.
ny by bz oaoaos Normal to ellipse ab; distances from origin to normal and tangent.
Lm,no ... Direction cosines of normal # o any surfare.
3; Sy Bpmmmmcmaaca Length along any Ling; lengths aleng meridian and cirele of latitude,
EXE 7R S Cartesian eoordinates; also ¢oordinate azes.
LA AT Polar cgordinates of prolate spheroid abe.
# 8- o o oo--_-.- Eeceentric angle of b, inclination to x of normal ta cb.
EINEMATICAL
Wy W________oo-- Compoenent velocities of fluid parallel to x, ¥, 2 axes.
b Thmemmmmme e e m Component velocitiss of fluid parallel to tangent and nermal.
P D Rasultant veloeity of fluid before and after disturbance.
My Uy Wammmmmmemmm Compenent translation velocities of abe parallel io a, b, ¢
UV, Weo.. Component ranslation veloeities of abe parallel to @, b, ¢ ALt . bol
R A Component rotation velocities of abe about a, b, e .. __ ernative symhols.
Doy oo D mmmmcrn Component rotation velocities of gbo about @, &, oo ...
e e Velaeity potential, stream funetion.
Way MYy Mew o omemm Potential coefliclents for abc with velecities w, v, wor U, ¥V, W.
B gy My Mmoo Potential coeflicienta for abe with velocities p, ¢, r or 2, B, Q.
O=A+T2 L Vi We__ Resultant velocity of abe.
. DYNAMICAL
Ay, By, €5 __..._. Momenta of inertia of rigid hody about its axes a, b, e
A B, O aaas Moments of inertia of displaced fiuid moving as a solid.
W, B - Maszs of body, mazs of diaplaced fluid.
Py Tamcceeeeee—e—- Dangity of fluid, velume of model or displaced fluid.
Py Pr------oen---- Pressure of fluid moving, pressure on ¢coming to rest.
Xi, ¥, &0y Rieoee. Component forces spplied to free rigid body; resultant force.
X, Y, Z; R.______ Component forces exerted by hody on fluid; resultant force.
L, M, N___.._.. Component moments sbout g, b, ¢ applied to rigid hody.
LM, N_ . Component moments about g, b, ¢ exerted by body on Auvid.
Reay dow, R L ___ Inertis coefficients for abe moving parallel to «, &, ¢ in fluid.
oy kb Bgeaaocron Inertia coeflicients for abe rotating about ¢, &, ¢ in fluid.
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TABLE 1

" ELLIPTIC INTEGRALS F(8, ¢), E@, ¢)*
[Defined in aq. (75), Part V]

1
Bfc .
a}é
i 2 3 4 5 6 7 i $ 9 10 @
F@, €3
1 0. 00000
2 L 51686 1, 04720
3 1. TG00 1. 43870 1, 2095
4 I, 06412 1. 71874 1. ke L 31814
5 2, 203819 19278 1, 98471 L 50637 1. 36040
fi 2, 47N 210413 1. 83188 1, 66560 1. 62053 1. 46352
7 2. 83508 2, 25400 1. GAG20 1, 50281 L. B4 1. 52050 1. 42746
5 2 77024 2. 38432 2, 12075 1,923 7% 1. 764545 1. 64184 1. 53505 1. 44530
g &, 85035 2 4071 o 23058 019 1, 87313 L 4321 1. 63408 1 RBE 1 45048
10 5, 00438 2, 80288 2, ik 2. 12858 1, DR 1, 83634 L Tasy 1. 82768 1. 64418 -1, 47063
- w - k- [ 0 [ o L] o (-] o
Ei®, ¢}
1 0. D00
2 . Ba602 1 0473
b1 .2y 1. 04 1, 23005
4 . hagae L 0g0iL 1. 18103 131814
5 97878 1, 05010 1. 14387 1. 25126 1. 36340
i) . GRa0G 104146 1. 11604 1.2 1. 20906 L. 40832
i . JRET2 103472 1. 0B5%0 1, 16888 1. 24808 1. 33574 1, 42745
8 + zld 1 (2M6 L 0307L 1. 14155 1. 21053 1, 28461 L 35L7 L 44530
o ST LO262D 1. 05804 1, 12136 1, 18040 1. 24464 1. 81304 1, 38483 1. 45ME ’
10 » G 1, 02195 1, 05060 1, 10418 1. 15563 L. 21267 L. 2ra1 1. 33042 1, 40249 1. 470G
I 1o GO0 | 1. 000 T, 00000 1, 00000 - 1 0000 - L. 00000 1. 00000 L 0000 1, DO0KY 1. 00000
1The integrals in this table sre culled from L. Potin's Formulss ot Tables Numerique.
TABLE II
GREEN’S INTEGRALS o, 8, 10
[Defined in aq. {¥3), Part V)
e
424 1 3 3 4 & 3 7 § 9 10 @
o)
1 0. Goa6T
2 LTI Q. 47260
3 L 21751 . 31265 0, 36460
4 . .1 AT L2630 ), 2084
5 P U0 b I b . 20710 . 23180 0. 24051
& . 085527 L3471 . 18584 . 18760 . 2336 0. 21541
7 . 080268 . 10950 . 18620 . 15641 . 16570 . 18079 (. 18050
B . D56R04 . 187 L 11435 . 13135 - 14428 . 15440 . 16254 0. 16074
o JOHTTI0 L ITOT1 . 0B7ETL . 11278 - 148 . 13378 . 14132 . 14757 0 15271
10 L040637 . 086208 . 084351 . 097057 . 10872 L 11728 L 12423 + 13010 . 13500 . 13920
™ o T a [ 0 0 0 9 0 & 0
-]
1 0, 66067
2 « B204E 0, 47280
3 B2 <533 0. 36460
4 o459 . 50064 - JOEGE 0, 20636
5 L Bdd1 . BA182 - 41504 . 31587 & 24051
6 . 5 N 3 L 43307 . M5 . 3255 0. 21541
7 L DEARE LB1TTE . 44413 . 4083 eyl L AT 0. 18050
2 LBLEL LB . 45280 L Mng . 2BOYT1 el . 19654 1, 16014
9 0810 L6313 L4513 . BESE0 . 28708 . BT N . 17458 . 15271
10 2 | 6437 . 36109 . 2083 . L . X2 L1707 L15712 0. 13920
] LOM . 68867 « 50000 o 0 . 43333 . 8/3T2 o 25000 . + 20000 L1882
By
i 0. 56667
2  BI64E 1. (5440
ES LERLET 1,1512 1. 27076
: 4 ' 1, 20572 1. 33318 1, 40724
i & . 1, 255752 1. 37478 L 45323 1. 50093
H ¢ Q0TS 1, 25835 1. 40110 L 43257 1. 63401 L 58018
: T . DEGAS 1.2727% 1. 41956 1. 6877 1, GE7EL 1, G4z 1, 82100
| £ LEOTLEL 1. 28300 1. 43306 1. 51953 1, 57504 1, 61326 Lere1 . 186172
i 4 97810 1. 20106 1. 44720 1. 53154 1. 52B4d L 62775 1. 85630 1. 67784 1. 68457
! 10 N2 1 2720 1. 45125 1 54004 1. 50R05 1. 63017 1. 96546 1. 6082 1. TOTET 1.72160
i o 1. 000 1 1 1. G000} 1, G6GET 1 Tld2 L 75000 L7718 1. 80000 L1813 |2, 00C0)
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TABLE III
POTENTIAL COEFFICIENTS m,, s m.* FOR ELLIPSQIDS IN TRANSLATION

{For outer surface of o bc)
[Defined in eq, (76)]

ble
aje 1 l 2 | 3 4 5 & 4 ’ 8 ¥ 10 !
iy
1 0. 5000
2 L 2100 0. 30%
3 L1230 . 1853 0, 2200
4 LGBl - 1268 . 1549 0. 1740
5 05818 - A58 L1153 .13l Q. Has
) 04522 L (o 042 . 1638 A3 | 01207
1 . 3588 L0572 . 07313 . QR4D% 154 L Od28 0. 1047
8 L Dy . . 8054 0029 T . DE3ea . 0348 0. 03288
9 24 05129 . 05975 03437 . 07160 L vs03 . 07966 . 08267
10 02074 O . 04405 . 05150 05748 06229 . 05626 . 06058 07238 0.07421
L 0 [} L] ] 0 ) o
[0
1 0. 5000
2 L T42 0. 3095
3 L B39 . B6dh 0.
4 L B00E Ir. ) 2474 O 174y
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FLOW AND FORCE EQUATIONS FOR A4 BODY REVOLVING IN A FLUID

TABLE IV
POTENTIAL COEFFICIENTS m',, m'y, m'. FDR_ ELLIPSOIDE IN ROTATION
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TABLE V
"POTENTIAL COEFFICIENTS m's, m'y, m'. FOR ELLIPSOIDS IN ROTATION .
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TABLE VI

INERTIA COEFFICIENTS ! i',, &'y, &', FOR ELLIPSOIDS IN ROTATION
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TABLE VIIL

INERTIA COEFFICIENTS &, &5, &, FOR ELLIPEOIDS IN ROTATION.
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TABLE VIII
INERTIA VALUES FOR LIMITING FORMS OF ELLIPBOIDSE a>>b>>¢

INERTIA COEFFICIENTS FOR TRANSLATION AND ROTATION
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TABLE IX
LIFT, DRAG, AND MOMENT ON ENDLESS ELLIPTIC CYLINDER
[Width 8 inches, thickness 2 inches, alr apeed 40 miles per hoar)

% Momsnt abant long
Litt Drag | axis ppund faot per
foot ritn
Angls
b £
by ' Theorett-
degrees P
ound per foot | Experi- cal
ran mental | N=13302
slo 2
-8 —2.30 Q, 180 ==, 335 =4, 35%
i —-L@ 130 — 25 —. T84
—4 —L 42 182 —. ¥T0 —, iBgd
-3 =Ll 118 —. T —, 1400
-2 -7 Ll —, (84 —. 0924
—1 =. 40 108 —. M2 —. ey
+‘1} 4? a :% -IE' 044 -}o- 0467
2 .80 .1l . 086 L0634
h 3 113 .118 .14 . oG
] 4 . L4 123 171 . 1864
1 6 | LW L 140 249 L 2TE
i +8 ! 415 165 +.32% +. 3661

. ‘ga t}? test angles o wege in part fractional, all measurements ik Table IX are [alred trom the original grapbs of litt, drag, and moment versus
1N g . .

TABLE X
LIFT, DRAG, AND MOMENT ON ENDLESS THIN FLAT PLATE
[Width & inches, alr spsed 40 miles per hou]
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LIFT, DRAG, AND MOMENT ON THIN ELLIPTIC WING
[Length 30 inches, width 5 inches, air speed 40 milas per hour)

MOMENT ON PROLATE SFHEROID?
{Length % inchea, diameter B inches, through-aie speed 40 (et per second]
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NATTIONAL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL MEMORANDUM NO. 713

BEHAVIOR OF VORTEX SYSTEM3#

By A, Betz

Progressive application of the Kutta-Joukowsky theorem to the relation-
ship between airfoil lift and circulation affords a number of feormulas con-—
cerning the conduct of vortex systems. The application of this line of
reasoning to several problems of airfoil theory yields an insight into many
hitherto little observed relations.

The report is confined to plane flow, hence all vortex filaments are
straight and mutually parallel (perpendicular to the plane of flow).

1. GENERAL THEOREMS

1. EKutta-Joukowsky thecorem.- When a body, about which the line integral
of the flow is other than zero, i.e., with a circulation T, is in motion
relative to this fluid with speed v, it is impressed by a force perpendlcular
to the direction of motlon, which per unit length is

P = pvl (1)

(Kutta-Joukowsky theorem, fig, 1}, If there is no motion in the fluid other
than the circulatery flow, then v - is the speed at infinity relative teo the
fluid., But, if the fluid executes still other motions aside from the c¢circula-
tion, say, when several veortices, or sources and sinks are existent, it is

not forthwith clear which is to be considered as the relative speed. On the
other hand, we do know that v should be the speed of the body relative to
that flow which would prevail in the place of the body in its absence. The
body is thereby assumed as infinitely small, otherwise different speeds could
prevail at different places of the body. (This case can be worked up by
integration from infinitely small bedies,) This finer distinction of the
Kutta-Joukowsky theorem is readily understood when bearing in mind that a

free vortex, upon which mo force can act, moves at the same speed as the flow
in the place of the vortex if the latter were nonexistent. Consequently, the
Kutta-Joukowsky theorem must afford the force zero for the motion at this
speed, that is, the speed in the Kutta-Joukowsky theorem must be measured rel-
ative to this motion., 3But this may also be shown direct by appropriate

*"Verhalten von Wirbelsystemen." 2Z.f.a.M.M., vol. XII, no. 3, June 1932,
pp. 164-174,
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derivation of the Kutta-Joukowsky theorem. The general rule for this deriva-
tion consists of computing those pressures in a coordinate system, in which
the body rests (steady motion), which as result of superposition of circula-
tion and translation act upon a3 control area enveloping the body and the
momentums which enter and leave through it. Thus when we choose as control
area a cylinder enveloping the body so closely that the speed of translation
in the whole region of the contrel area can be considered as constant, this
gelfsame translatory speed contiguous to the body becomes the speed v in
the Kutta-Joukowsky theorem, although it is the speed which would prevail at
this point if the body were nonexistent.

2. The center of grawvity of finite vortex zones.- If there are a number
of wortices in a fluild, each individual one is within a flow which as field of
all other vortices is determined by their magnitude and arrangement, and each
vortex moves with thie flow. Visualizing these vortices replaced by individual
golid bodies with the same circulation as the vortices (say, rotating cylinders),
the flow also is the same. Preventing these bodies from moving with the flow
without effecting a change in their circulation, each cylinder is impressed
according to Kutta-Joukowsky by a force and we must, in order to hold it,
exert an opposite force upon it. For a body with cireulation T 0’ exlsting
at a point with speed A this force is

Pn =0 vy Pn (2)
and is at right angles to v, The resultant of the forces exerted on the
cylinders must be taken up by the walls at the boundariles of the fluid, i.e.,
it must be equal to the resultant from the pressures of the fluid onto the
boundary wall.#*

*By restraining the vortices the flow becomes steady (provided that there are
no singularities other than these vortices, and that the boundary walls are
rigid and quiescent). For which reason the pressures can be computed by the

simple Bornoulli equation p + %—= vZ = constant. For free vortices the type

of flow within a stated time interval is the same as for restrained vortices,
but it is usually no longer steady, for the vortices travel, that is, change
their arrangement in space. Therefore the pressures change also, because for

nonsteady flow the generalized Bornoulli equation +E 424 2. constant
g q P~y ° 3¢

is applicable (¢ = flow potential, for steady flow %%—= 0). With free
vortices there is no force as is in the restrained vortices, so that the
resultant force on the boundary walls must disappear. This is precisely

obtained by the accelerating forces Consequently, the forces on the

22
5t
fluid boundaries used here and in the following are those forces which would
occuy if the vortices were restrained, i.e., by steady flow.
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Now, if the fluid is very much extended so that its assumedly rigid and
quiescent boundaries are everywhere far removed from the vortices (or bodies
with circulation), the resultant of the pressures onto the boundary walls
approaches zero when the vortices are restrained. For the flow velocity v
produced by the vortices decreases inversely proportional to the first power
of the distance, while the relevant pressure differences (Bornoulli's

equation - = - E-vz) drop inversely proportiomal to the square of the
9 P = P, 3 P q

distance; the surface of the boundary increases linearly with the distance, so
that the force produced as sum of pressure difference and surface is a :
dacrease inversely proportional to the distance.

But when this force on the boundary walls vanishes, the resultant force
on our body must disappear also, or in other words,

LRSI AN &
As the forces P, or the speeds v~ may assume any direction, ¥ is
considered a vectorial addition of the forces or speeds, respectively. Instead
of that the components in the X and Y direction may be added separately, in
which case

% an = E ny n =0 (3a)
and
E Pny =P E vnx I'n - (3b)

with ¥ and y as components along X and Y of the respective vectors. If we
releage the bodies, whereby they can be replaced again by common vortices, they
move at the speed v_, and our preceding equations constitute a general prediec-
tion as to the displacement of the vortices within a fluid without extraneous
forces, especially in a fluid extended to infinity. To illustrate: visualize
the vortices replaced by mass points (material system) whose mass is propor-
tional te the vortex intensities, Admittedly, we must also include negative
masses, in which the vortices with one sense of rotation correspond to

positive masses and those with opposite sense of rotation correspond to
negative masses. Then we may speak of a center of gravity of a vortex system,
while meaning the center of gravity of the corresponding mass system. Applying
this interpretation, the vortex motion can be expressed as follows:

Theorem l.- The motion of vortices in a fluid upon which no extraneous
forces can act (fluid extended to infinity), is such that their center of
gravity relative to the rigid fluid boundaries or relative to the fluild at
rest at infinity remains unchanged. This theorem has already been developed,
although in a different way, by Helmholtz, in his well-known work (reference 1),
The premise is, of course, the absence of further singular points in the fluid
other than the stipulated vortices.
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If the fluid is bounded by rigid walls and it is possible to make some
prediction as to the resultant force on the boundary walls by restrained
vortices (steady flow), then equation (2) gives an account of motion of the
center of gravity of the vortex.

TIf the resultant force on the walls is P, then
p L v, Tn =P | (4)
with v, = velocity in center of gravity relative to the rigid walls, we have

PV, z Tn =p I Yy Tn =P

hence,

P
vo = p T (3
n

which is at right angles to the force P. Thus,

Theorem 2.~ When, by restrained vortices (steady flow), the pressures
exerted by the fluid onto the boundary walls produce a resultant force, then
the movement of the center of gravity of the free vortices is such as an air-
foil whose circulation equals the sum of the circulations of the vortices
would need to have an quiescent, infinitely extended fluid to make its lift
equal to this resultant force.

As a rule the pressures on the boundary walls and thus thelr resultant
force are not summarily known, although it is possible to make at least certaim
predictions in many cases. For example, if the fluid is bounded on one side
by a flat wall or enclosed between two parallel walls, the resultant force
can only be perpendicular to those boundary walls. Since the center of gravity
of the vortices moves perpendicularly to this force.

‘Theorem 3 reads as follows: If there are vortices between two flat,
parallel walls or on one side of a flat boundary wall, the distance of the
center of gravity of the vortex from these walls remains unchanged (it moves
parallel to the walls). This result has already been obtained for a small
number of vortices by numerical caleulation of the vortex paths.*®

3. Inertia moment of Finite vortex zones.- Again visualize the vortices
as being held fast in a fluid and decompose the speeds on each vortex into a
component radially toward or away from the center of gravity and ome at right
angles thereto. If r 1s the distance of a vortex with circulation T away
from the center of gravity, and v, the radial (outwardly directed) speed
component, this vortex is impressed with a force

*]. Muller's report before the meeting of the members of the Ges., f. angew.
Math. u. Mech., at Gottingen, 1929; and of physicists, at Prague, 1929.
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T=pT Vr
which is perpendicular to t and therefore forms a moment T T with respect
to the center of gravity. The tangential component v (perpendicular to 1)
produces a force along 1 which does not set up a momént about the center of
gravity. The sum of the forces impressed upon the vortices can be diwvided
into a resultant passing through the center of gravity (radial force component
due to vt) and a moment

M=pIT v, T.

Thev must be equal and opposite to the forces and moments acting on the fluid
boundaries. Releasing the vortices, the center of gravity moves conformably
to the laws 0f the individual force. Moreover, the vortices move also in -
radial direction at speed Vo Since

v = 2L
T ot
we obtain
8r _p 38 2 _ -
p I Trx 5t 2 3% IT T M . {6)

where M = moment of extranecus forces, by restrained veortices, with respect
to the center of gravity. If this is zero,* we have

% T 12 = constant (7

IT ¥ is a quantity which corresponds to the polar mass moment of inertia
I m 2 relative to the center of gravity., Consequently, it may be designated
as inertia moment of the vortex system and we obtain

Theorem 4,— When, by restrained vortices, the extraneous forces acting on
- a fluid have no moment with respect te the center of gravity of the vortex
system within this fluid, the inertia moment of this system of wortices remains
constant.

If the moment of the extraneous forces is in the same sense as the chosen
positive vortex rotation, this inertia moment inc¢reases according to equa-
tion (6) and vice versa.

4. Vortex svstems whose total circulation is zero.— The kinetic energy
of a potential vertex in infinitely extended flow in a circular ring between
r and dr and thickness layer 1 is

*Whether or not there is an extraneous moment in a given case requires a more
careful analysis than the problem of extraneous forces, since, for example,
the forces decrease toward zero with 1/r when the boundary surfaces are
enlarged, whereas the moments may remain finite because of the added factor

r as lever arm.
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2
%— 5%;) 2r7dr
Integration over the whole fluid (from r =0 to r = =) yields by approxima-
tion to r =0 as well as toc r = =, the energy as «, For which reason it is
physically impossible to realize such vortices. The difficulty with r = 0 is
obviated because the physical vortices always have a nucleus of finite diameter,
in which the speed no longer rises with 1/r toward <, but remains finite,
But by 1 = = the difficulty remains (apart from the energy the rotary momen—
tum likewise = «), As a result, the production of vorxtices in an infinitely
extended fluid can only be effected by pairs, sc¢ that the sum of the circula-
tions 1s zero. The velocity field of such a doublet drops at great distances
inversely as the square of the distance so that the fluid energy remains
finite for any extension. Hence,

p I% dr
2 2% ¢

Theorem 5.- The total circulation ot all vortices in an infinitely extended
fluid is zero. No vortex system with finite total circulation can occur unless
the fluid is finitely limited. And of course, a part of the vortices in an
infinitely extended fluid can also be at such a remote distance as to be of no
account for the flow at that particular point. There may then be vortex
systems with one-sided total circulation, in which the very vortices which
supplement the total circulation to zero are very remote from it. Since,-
however, energy and momentum of twe opposite vortices increase with the distance,
very great distances are encountered only in cases of very great energy input.
The case of a vortex system with zero total cirxculation is consequently rela-
tively frequent and deserves special consideration, since the center of gravity
of such & system lies, as we know, at infinity, so that the preceding theorems
are not summarily applicable in part.

Combining one part of the vortices into one group and the others inte
another group, we can analyze each group by itself, as, for instance, the
clockwise rotating vortices in one, and the anticlockwise vortices in amother,
although this is not necessary. The only condition is that the total circula-
tion of the one group be equal and opposite to that of the other group and
other than zero.

In the absence of forces and moments on the fluid,* as, say, by infinitely
extended fluid, the forces and moments on restrained vortices must be zero or,
in other words, the resultant force on one group must be equal and opposite to
the force on the other and be on the same line with it. But these forces need
not necessarily pass through the center of gravity of each of the two groups.
When the vortices are released the center of gravity of each of the two groups
moves perpendicularly to this onesided force and at the same speed, This is
expressed in

*In such vortex systems the moments also are forthwith small when pushing
beyond the rigid boundary walls. (Compare footnote on page 8.)
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Theorem 6, as follows: The motion of the centers of gravity of two groups
of vortices with equal and opposite total circulation is mutually parallel and
has the same speed, hence constant distance.

Knowing at first absolutely nothing about the directlon of the opposite
force, we can make no prediction as to the direction of moticn. When this
opposite foxce passes through the center of gravity of a group, this group is
without extranecus moments and its inertia moment is then constant (theorem 4).*
As a rule this force does not exactly go through the center of gravity of the
two groups. But when they are separate to a certain extent and closed in
themselves, the force almost always passes very close to the center of gravity,
in which case we can then consider the inertia moments at least approximately
as constant,

If the force does not pasg through the centers of gravity of the groups,
their inertia moment changes. But if the force is parallel to the line
connecting the two centers of pressure (S, S,, fig. 2), which is manifested
by their perpendicular motion to the comnecting line, the moment of the force
relative to the two centers. of gravity is equal and opposite. The result is
that ‘the inertia moment of one group increases at the same rate as that of the
other group decreases. (One inertia moment is usually positive, the other
negative; their absclute values thus increase or decrease to the same extent.)

Theorem 7.- If the motion of the centers of gravity of twe groups of
vortices of equal and opposite total circulation within an infinitely extended
quiescent fluid is perpendicular to the line connecting the gravity centers,
the algebraic sum of the inertia moments of the groups remains unchanged.

When the force forms an angle with this connecting line (S; S, fig. 3),
that-is, when one velocity component v_ 1is along its connecting line, the
ipertia moment of one group increases more than that of the other decreases
or vice versa. In any case, the sum of the inertia moments of the two groups
is changed. It amounts, in fact, to

&(2r12r1+zr22r2)=2vxazr (8)

according to equation (6) and figure 3. (£ r;? Iy is the inertia moment of
one group, ¢ r;2 I's that of the other, a is the distance of the two centers
of gravity, amd I T the total circulaticn of one group.)

*#Tt was always assumed that no singularity other than the vortex system
existed. But with the two groups and each considered by itself, the assump-
tion ceases to hold. However, the previous considerations can be generalized
so that the forces needed to restrain the vortices of the momentarily dis-
regarded group, become the extraneous forces on the fluid. It ie readily secen
that theorem 4 is equally applicable in this sense to a group of vortices in
the presence of further vortices,
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The sum of the inertia moments increases when the motion of the centers
of gravity in direction of the group with positive circulation is toward the
group with negative circulation. It decreases for opposite direction. Thus
£ T in equation (8) denotes the total circulation of that group, which moves
toward the other.

II. APPLICATION

In the practical application of these theorems, it frequently is not so
much 2 case of a number of individual vortices, but rather of continuously
distributed vortices. But that presents no difficulty; it merely means substi-
tuting terms for ¥ terms. It is, however, something else when the vortex
systems extend to infinity and at the same time have infinitely large circula-
tion. But with some care, they alsc are amenable to solution by these
theorems.

1. Vortices back of an airplane wing.- According to airfoil theory (see
Handb. d. Phys., vol. VII, p. 239 ff), an area of discontinuity is formed
behind a wing by optimum 1lift distribution (minimum by given 1lift), which has
the same speed of downwash at every point. Thus the flow behind an airfoil
may be visualized as if a rigld plate, the area of discontinuity, were down-
wardly displaced at constant speed and thereby sets the fluid in motion
(fig. 4). This, however, is applicable only in first approximation when the
interference velocities (foremost of which is the speed of displacement w)
are small compared to the flight speed. For this metion would only be possible
for any length of time if the area of discontinuity actually were rigid. By
flowing around the edges, laterally directed suction forces P occur, which
only could be taken up by a rigid plate. These forces are absent when the
area of discontinuity is other than rigid, as a result of which the suction P
effects other motions; starting at the edges, it unrolls and gradually forms
two distinct vortices (fig. 5).

With 7 = wing span, the circulation per unit length of -%% for such an

area of discontinuity is distributed across the span conformably to the
following equation

a (2 2 (9)
dx 0(2) m

with T, = circulation about the wing in its median plane. The downward veloc-
ity of the area of discontinuity prior to development is

T
o

W=7 (10)

The area of discontinuity may be regarded as a continucusly distributed
system of vortices with zero tetal circulation., The distribution of the
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vortices 1s given in equation (9). Combining the two symmetrical halves

(- %—g x<0 and 0<x g-%) into one group each, the distance of the center
of gravity of the two groups must remain the same, according to theorem 6.

The center of gravity of a system of vortices conformable to equation (9) from
0 to 1/2 1lies, as is readily computable, at a distance.

i
5 (11)

x =3

0 4
from the center, so that the distance of the centers of gravity of the two
groups becomes

il
a—2}(0—~zz _ (12)

This, then, is accordingly also the distance of the centers of gravity of
the two formative individual vortices (fig. 53). The steady symmetry of the
process in the present case is indiecative of the congistentiy parallel dis-
placement of the centers of gravity and consequently, that the individual
vortices are also symmetrical to the original plane of symmetry.

The process of convolution or development with respect to time can also
be followed by similar considerations, although this calls for considerable
mathematical work. Up to the present the course of the process has been
explored very accurately in its first stages, during which the developed part
was still small compared to the whole area of discontinuity {reference 3).

In the present report an attempt is made to gain approximate information
regarding the magnitude of the tip vortices and the circulatory distribution
within them. The vortices of the area of discontinuity are divided at some
point x and those lying to the left are grouped into one; these to the right
of it (full 1line in fig. 6) into another. Then it is assumed that the opposite
forces on the two groups - the vortices being restrained - pass through the
center of gravity of both groups, which actually proves fairly correct, because
of the comparatively strong concentration of the vortices toward the tips and
the ensuing distinct separation of both groups. Now the inertia moment of one
vortex group must remain approximately constant during develépment. The total
circulation of cone group of the undeveloped area of discontinuity from x to

/2 is
/2 . 2
_ ar - _ 2x
T, —f dx =1 )1 (T ) . (13)

For the ensuing calculation the angle ¢ 1s used in place of the variable x,
which is bound up with =x through

2
cog ¢ = %5 and sin ¢ = vl ~(%5) (14)
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Thus the vortex distribution (equation 9) becomeg:

2\ 2
1 - (E)z
7
2 2
r.=r, Yi- —55) =T, sin ¢ (13a)

The distance of the center of gravity of this group is:

L/2 b
1 oL -1 Ef 24dd = — L 1 502
X = Px s ye xdx = sin § 24 cos~ddp = m [4) + 5 gin“ ¢ (15)

The inertia moment of the group with respect to the center of the area
of discontinuity (x = 0) is:

/2 2 at 2
~ 3 a. _ o L Spds = (E) ( L gin2 )
jo _f EE xdx = l-'0(2) J; cosede = FO 2 sing {1l - 3 sin® ¢ (186)

X

The inertia moment of the group with respect to its center of gravity is:

- 2 2
Jx- - Jo - T I‘ol(%) sing (l - % sin2¢)
2
- (%) 's"i_:t? [¢ + % sin 2¢]2] (17)

This inextia moment must be present again after the convolution.

Now the coiled-up group is assumed to be circular; that 1is, the asymmetry
stipulated by the mutual interference of the two coiled-up vortices is dis-
regarded, so that the circulation may be presented as a pure function of radius
(I = £(£)). The vortex group from x to /2 1is coiled up into a spiral
which fills the circle with radius r. Then the cireulation T, must be equal
to the circulation of the original vortex group

Pr =T, (18)

and likewise, the inertia moment of the vortices coiled up in this cirele must
be equal to the original inertia moment of the vortex group

r
2L 2 4. =

Permitting r to increase by dr, then decreases x by dx and increases
¢ by dp under these premises. The result is an increase of
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Bfr BPK
e dr = 35—-d¢ = Po cos ¢ db (z20)
in eirculation, and of
BPr ) BJX
37 ¢ dr =-§$— dé (21

in Inertia moment.
Then the differentiation of (17) yields

aJ 2 3 cos 1 2
_£=PO (%_) [cos¢+ T eint § (¢ + 5 sin 2¢)

—ﬁm(ﬂ) +%sin 2¢)(]. + cos 2¢:|

which, written into (21) and with regard to (20) gives

2 = pmelp d L L 2 _ cost ( 1. )
(%;) = cosld + s oins (¥ + = sin 2¢) Sint b + 5 sin 2¢ (22)

> .
Since siny = yl - (%E) , {equation 22) connctes the relationship between

r and x, that is, it gives the size of the circle into which a plece of the
original area of discontinuity has changed., And, knowing the circulation

I =T, sin ¢, the equation also discloses the distribution of the circulation
in the coiled-up tip vortex. Figure 7 shows the respective values of T and
% versus r, and also the distribution of the vortex density

2 .
d(ggﬂ) 23 T - When forming the pertinent boundary tramsitions, equation (22)
o .
yields
2
(%E = %-sin“¢ (23)

for very small values of ¢, so that

-2 (24)
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In other words, a small boundary piece of the area of discontimuity coils
up into a circle, whose radius is 2/3 of the length of the original piece.

For ¢ = %— we have %£-= %-, which means that the radius of the tip
vortices is %—E-. Since the center of the tip vortices is %—%— distant from

the plane of symmetry, it would indicate that the two tip vortices precisely
touch each other. But for such close proximity, our assumption that the
individual tip vortices shall be symmetrical circles, ceases to hold: the
speed between the two vortices is substantially greater than it is outside,
with the result that the individual streamlines are outwardly displaced. So
in reality the vortices should not touch each other, The established approxi-
mate result however, may, because of its simplicity, give a ready picture

of the order of magnitude of the vortices. According to figure 7, the rela-
lationship between r and x is fairly linear. Hence r = % %—— xz) in the
greater part of the vortex conformable to (24), and it is only in the outer
edge of the vortex that the factor 2/3 changes to r/4. The curve for the
distribution of the vortex density shows the main part of the vortices to be
very much concentrated around the center despite their comparatively great
extent.

2. Phenomena behind cascades of airfoils.- Cascades of airfoils also
form areas of discontinuity aft of the airfoils (fig. 8), and whose motion
relative to the undisturbed flow would, by optimum lift distribution, be as
for rigid surfaces, if the edges could absorb the suction, But in reality
they develop with respect to time. (See Handb. d. Phys., veol., VII,

p. 272 £f£.)

Let us analyze the practically always existing case wherein the distance
a' of the surfaces is small compared to their span. Assuming the areas of
discontinuity to be actually rigid, the flow around the rigid surfaces far
behind the airfoils would, near the edge, be as shown in figure 9, when
choosing a system of coordinates within which these surfaces rest. The motion
in this system of coordinates being steady, Bernoulli's equation can be
employed. Inasmuch as the interference velocity between the surfaces far
removed from the edge is evanescently small relative to the surfaces, whereas
outside in the undisturbed flow the relative velocity is equal and opposite
to the velocity of displacement w, Bernoulli's equation yields

1

= o 2
P=p3 (25)
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positive pressure between the surfaces with respect to the pressure in the
undisturbed flow on the side of the surfaces.* This positive pressure balances
the suction at the plate edges. For an analysis of the horizontal forces
acting upon a fluid strip of the height of the surface spacing a', reveals

on one side a force a' p 5 s as rasult of the pressure difference within and

without, and on the other the suction at one plate edge. No momentums are
transmitted by the boundary surfaces, therefore the suction must be

F=a'p %i (26)

In such a system of surfaces the vortices are very much concertrated at
the boundaries, at great distance from the edge, that is, in the entire middle
part of the surfaces the relative velocities are practically zero and with it,
of course, the velocity differences on both sides of the surfaces, i.e., the
vortices. As a result, the effects of the developed and of the undeveloped
areas of discontinuity are equal at distances which are great compared to
spacing a', since the spatial transformation of the vortices during develop-
ment is subordinate as against the great distance. Nevertheless, there is a
fundamental difference as far as the flow is concerned between the theoretical
process with undeveloped rigid surfaces and the actual process with developed
individual vortices, a fact which up to now has never been pointed out, to my
knowledge. -

The vortex group at one side is in the velocity field of the vortices of
the other. Owing to its remoteness, this field does not change appreciably
during the development. Thug assuming the vortices as restrained before and
after development, the mutual force exerted by the wortices, remains the same,
and with it the velocity in the center of gravity of the developed and the
undeveloped vortices. But when visualizing the areas of discontinuity as
rigid, they are then no longer exempt from forces because of the suction P,
and in that case the velocity 1s greater by an amcunt

Aw = (27

P
pl

*Directly behind the cascades the pressures and velocities are different. By
contraction or expansion of the lateral edges of the areas of discontinuity
(positive or negative contraction) equilibrium is, however, established with
the pressure of the lateral undisturbed flow, resulting in a correspondingly
different speed. (see Handb. d. Phys., vol. VII, p. 259 ff.) Here and in
the following the conditions subsequent to this balance are considered only.
For many purposes it should be noted that owing te the width changes of the
hypothetical rigid area of discontinuity the suction at the edges has a
component along the direction of flow.
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than with the free vortices. T 1is hereim the circulation about the part of
the area of discontinuity lying on one side of the plane of symmetry, respec-
tively, about the single vortex developed therefrom (for the rest equal to the
circulation about the airfoil in its median part). Following the line integral
in figure 9, it is readily seen that

‘w (28)
hence, with due regard to (26):
aw=g | (29)

Then the velocity of the free vortices is:

Wo=w - bw=g | (30)
As a matter of fact, the process of development is such that the center
of gravity of the vortices clustered around each edge, lags behind the velocity
of the central main part of the surfaces. Whereas the latter moves at velocity
w, the center of gravity of the vortices moves at a gspeed w/2 and it maintains
this speed in the final attitude after development.

However, this speed w/2Z can also be deduced direct from the field of
the opposite veortices., At great distance it is identical with that of a
vertical row of concentric vortices (fig. 10). But at medium distance the
field of such a vortex row is a constant speed *w' = i§£7 dovmward on one
side and upward on the other. Between the two rows the fields of the two rows
add up to speed w, so that

w=2y (3L

The signs for the fields outside of the rows are contrary, hence the
speed is zero. Each vortex row itself moves under the effect of the momentary
other row, that is, its speed is

r o ¥
W 5 (32)

But there is yet another result which is not as readily conceived as the
change in vortex velocity. For the rigid surfaces we had within the deflected
flow a posgitive pressure q = p 7 which balanced the suction at the edges.
After development the suction is absent, so that there is also no more positive
pressure within between the vertex rows, ag can be proved from the Bernoulli
equation. In the chosen system of coordinates of figure 10, w 1s the speed
of the inside flow, 0 that of the ocutside flow, and w/2 that of the vortices.
To insure steady conditions, we must select a coordinate system in which the
vortices rest. Then the speed of the inside flow is w/2 and that of the
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cutside flow -w/2 (fig. 11). Both are of equal absolute magnitude, hence of
equal pressure within and without the vortex rows.

Now this change of pressure during development is not without influence
on the flow inside. Analyzing a cut through the airfoil cascades (figs. 8
and 12) while applying Bernoulli's equation to the speeds in front of and
behind the cascades, reveals by pressure balance (developed vortices, fig. 12).

C3 = C1 (33)

(undeveloped vortices)

and by p =p gﬁ

cr? + wl = ey 2 {(34)
Therefore the speed is greater after development than before {(cg > c5).

This result, while at first sight perhaps somewhat peculilar, can also be
elucidated in a different fashion. Looking at the cascades from the side,
once with undeveloped vortex surfaces (fig. 8), and then with developed vor-
tices (fig. 12), the direction of the detached vortices is manifestly different
because their own speed relative to the undisturbed flow is differemt (w and
w/2), The interference velocity w, which may be considered as vortex field,
is perpendicular to the vortices, and has therefore a somewhat different posi-
tion in both cases. For nondeveloped vortices, the vortices lie in the direc~
tion of ¢, w 1s perpendicular to ¢, (fig. 8), and since ¢, is composed
of undisturbed velocity ¢; and interference velocity w, we have

(’.‘.22=012—W2.

In the developed state the vortices move with natural speed w/2, that is,
they are between ¢; and c3. Since w and therefore w/2 in turn are
perpendicular to the vortices, the velocity vectors c¢), cy, and w form a
triangle in which the vortex line is the median line (fig. 12). But this
implies that c3 = ¢;.

Translation by J. Vanier,
National Advisory Committee for Aeronautics.
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GENERAL POTENTIAL THEORY OF ARBITRARY WING SECTIONS

By T. THEopoReEN and I. E. GaRRICK .

SUMMARY

Thic.report gives an exact trealment of the problem of
determining the Z-dimensional potentiel fow around
wing sections of any shape. The treafment is bosed
directly on the solution of this problem as advanced by
Theodorsen in N, A. C. A. Teehnieal Report No, 411.
The problem eondenses inle the compact form of an inde-
gral equation eapabdle of y*a,elrlmg numerical solutions by
a direct process.

An attempt has been made to anelyze and coordinaie
ihe resylls of earlier studies relating lo properties of wing
sections. The existing approvimate theory of thin wing
sections and the Jowkowsky theory with ifs numerous
generalizalions are reduced o special cases of the genéral
theory of arbilrary sections, permitiing @ clearer perspec-
tive of the entire filld. The method not only permits the
determination of the velocity af any poind of an arbitrary

section and the associated Lift and momends, but furnishes.

aleo o« seheme Jor developing new chapes of preassigned
gerodynamical propertics. The theory applies also o
bodies that are nol girfoils, and is of importance in other
branches of physics involving petential theory.

INTRODUCTION

The solution of the problem of determining the
2-dimensional poiential flow of a nonviscous incom-
pressible fluid around bodies of arbitrary shape can be
made to depend on & theorem in conformal represen-
. tation stated by Riemann almost a century agoe,
known as the fundamentsl theorem of conformal rep.
resentation. This theorem is equivalent to the state-
ment that it is possible to transform the region
bounded by a simple curve into the region bounded by
a cirele in such & way that sll equiipotential lines and
stream lines of the first region transform respectively
into those of the eircle. The theorem will be stated
move precitely in the body of this report and its sig-
nificence for wing section theory shown—suffice it at
present to state that if the anslyiic transformation by
which the one region is transformed conformally into
the region bounded by the circle is known, the poten-
tial field of this regiom is readily obteined in terms of
the potential field of the circle.

A number of transformations have been found by

means of which it is possible to transform a circle into |,

& contour resembling an airfoil shape. It is obviously
true that such theoretical airfoils possess no particular
qualities which make them superior to the types of more
empirical origin. It was probably primarily because
of the difficulty encountered in. the inverse problem,
viz, the problem of transforming an airfoil into a
cirele (which we shell denote as the divect process)
that such artificial types came into existence. The
2-dimensionsl theoreticel velooity distribution, or what
is ecalled the Aow psattern, is Iknown only for some
special symmetrical bodies and for the particular class
of Joukowsky eairfoils and their extensions, the out-
standing investigators ! being Kutts, Joukowsky, and
von Mises. Although ugeful in the development of
airfoil theory these theoretical airfoils are based solely
on special transformations employing only & small
part of the freedom permitied in the general case.
However, they still form the subject of numerous
isolated investigations.

The dircet process has been used in the theory of
thin asirfoils with some success. An approximate
theory of thin wing sections applicable only to the
mean camber line has heen developed 2 by Munk and
Birnbaum, and extended by others. However, at-
tempts * which have been made to solve the general
case of an arbitrary airfoil by direct processes have
resulted in intricete and practically unmansgeable
solutions. Lamb, in his “Hydrodynamics” (reference
1, p. 77), referring to this problem as dependent upon
the determination of the complex coefficients of a
conformal tronsformation, -states: “The diffieylty,
however, of determining these coefficients so as o
satisfy given boundary conditions is how so great as
to render this method of very limited application.
Indeed, tho determination of the irrotetional motion of
a liguid subjeet to given boundary conditions iz a
problem whose exact solution can be effected by direct
processes in only a very few cases. Most of the cases
for which we know the solution have been obtained by
an inverse procegs; viz, instead of trying to find a
value of ¢ or ¢ which satisfies [the Laplacian] v¢=0
or vi¢ =90 and given boundary conditions, we tske
some known solution of these differential equations

1 3ee biblography givesn in refershes §, Dp. N 34, and 533,
1O, footmota 1,
! B Appendiz IT of this paper,
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and inquire what boundary conditions it can be made
to satisfy.”

In a report (reference 2) recently published by the
National Advisory Committee for Aeronautics a gen-
eral solution employving a direet method was briefly
given, It was shown that the problem could be stated
jn & condensed form as an integral equation and also
that it was possible to effect the practical solution of
this equation for the case of sny given airfoil. A
formula giving the veloeity at any point of the surface
of an arbitrary airfoil was developed. The first part
of the present paper includes the essential develop-
ments of reference 2 and is devoted to a more com-
plete and precise treatment of the method, in particu-
lar with tespect to the evaluation of the integral
equation.

In a later part of this paper, a geometric treatment
of arbitrary airfoils, coordinating the resulis of earlier
investigations, is given. Special airfoil types have
also been studied on the basia of the general method
and their relations to arbitrary sirfoils have heen
snalyzed. The solution of the inverse problem of
eresting airfoils of special types, in particular, types of
specified aerodynamical properties, is indicated.

It is hoped that this paper will serve as a step
toward the unification and ultimate simplification of
the theory of the airfoil.

TRANSFORMATION OF 4N ARBITRARY AIRFOIL INTOQ
A CIRCLE

Statement of the problem.—The problem which this
Teport proposes to (reat may be formulated as follows,
Given an arbitrary airfoil* inclined at a specified angle
in a nonviseous incompressible fluid and translated
with uniform veloeity V. To determine the theoreti-
cal 2-dimensional velocity and pressure distribution at
all poings of the surface for all orientations, and to
investigate the properties of the field of flow surround-
ing the airfoil. Also, to determine the important
aetodynamical parameters of the airfoil. - Of further
interest, too, is the problem of finding shapes with

given aerodynamical properties.
Principles of the theory of fluid flow.—We shall

first briefly recall the known basie principles of the
theory of the irrotational flow of a frictionless incom-
pressible fluid in two dimensions. A flow is termed
“2_dimensional”’ when the motion is the same in all
planes parallel to s definite one, say »y. In this case
the linear velocity components v and ¢ of a fluid
element are functions of z, y, and { only.

The differentizl equation of the lines of flow in this
case js '

vde—u dy="0

i By na alcfol] shape, or wing seotton, is roughly meant an elongated smooth shape
roundad at the [eading edge and ending in p sharp edge at the reav. AT practical

girfollg are characterized by a lack of nhrinkit chamge of ciitratiee exeant for 8 romided |

noaennid A small rad s of enrvature at the kol
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and the equation of continuity is

du Br_ . du_2d(—3)
ax+ay—00ra— ay

which shows that the above first equation is an exact
differential.
If @=c is the integral, then

& _ %
'lf,:‘g; and »= '——aE

This function ¢ is called the stream function, and
the linez of flow, or streamlines, are given by the equa-
tion ==¢, where ¢ is in genersl an arbitrary function
of time.

Furthermore, we note that the existence of the
stream function does not depend on whether the motion
is irrotational or rotational. When rotational its
vortieity is

which is twice the mean angular velocity or “rotation "
of the fluid element. Hence, in irvotational flow the
stream funetion has to satisfy
92 | O°
Then there exists & velocity potential P and we have
OP @ L3

—— ==

ox Ay W

The equation of continuiiy is now
PP 3P _
ozt a,ys! -

Equations (1) show that

3P 20, P 20
dx o Oy Oy

so that the family of curves

0 )
=0

P =constant, {=constant

cut orthogonally at all their peints of intersection.
For steady flows, that is, flows that do not vary
with time, the paths of the particles esincide with the
streamlines so thet no fluid passes normal té them.
The Berroulll formula then holds and the total pres-
sure head H along a streamline s a constant, that is

Bpvt+p =

where p’ is the static pressure, ¢ the velocity, and »
the density. If we denote the undisturbed velocity
at infinity by V, the quantities p"—p’, by p, and
% p V2 by ¢, the Bernoulli formula may be expressed as

tri-(3)
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The solutions of equations (2) and (2'), infinite in
number, represent all possible types of irrotational
motion of a nonviscous incompressible fluid in two
dimensions. For a given problem there are usually
certain specified boundary conditions to ba satisfied
which may be sufficient to fix & unigque solution or a
family of solutions. The problem of an airfoil moving
uniformly at a fixed angle of incidence in & fluid field
is identical with that of an airfoil fived in position and
fluid streaming uniformly past it. Qur problem is
then to deterinine the funetions P and ¢ so that &he
velocity ab each point of the airfoil profile has s direc-
tion tangential to the surface (that is, the airfoil con-
tour is itself a streamline} and so that at infinite dis-
tance from the airfoil the Aluid has a constant velocity
and direction:

The introduction of the complex variable, z=x -1y,
simplifies the problem of determining P and @ Any
analytie fonction w(z) of a complex variable z, that is,
a function of 2z possessing a unigue derivative in a

= Plarre w Plone

FIooRE 1 —Conlormal property of analylic functions

region of the complex plane, may be separated into its
real and imaginaty parts ss w(Zy=wx+iy)=Pix, )
+ @z, ¥), determining functions P and ¢ which may
represent the velocity potential and stream function of
& possible fluid motion. Thus, shailytic funetions of &
complex variable possesz the special property that the

component functions P and @ satisfy the Cauchy--

Riemann equations {eq. (1)), and each therefore sleo
satisfies the equation of Laplace (eq. (2)). Conversely,
any function Piz, y)++Q(x 3) for which P and @
satisly relations (1) and (2) may bo written as wiz+
iy)=1p{z). The essential difficulty of the problem is
to find the particular function 1w(2) which satisfies the
specisl boundary-flow conditions mentioned above for
a specified sirfoil.

The method of conformal representation, a geomet-
ric application of the complex variable, is well adapted
to this problem:. The fundamental propertics of trans-
formations of this type may be stated as follows:
Consider a function of a comp]ex variable z=2x+1y,
say w(z) analytic in a given region, such that for each

each resl funetions of » and . Suppose now in the
ry complex plane thers is traced a simple curve §(z)
(Fig. 1.} Each vslue of z along the curve defines a
point w in the w plane and 7(z) maps into a curve f(1)
or Fiz). Because of the special properties of analytic
funetions of a complex variable, there exist certain
special relations between f(z) and F(z).

The outstanding property of functions of o complex
variable analytic In a region is the existence of a unique
derivative at every point of the region.

dw_ Lim w—w'_ ”
4z 227 z—7 ¢
Qr
dw = petvdz

This relation axpresses the fact that any small curve
2z’ through the point z i3 transformed into a small
curve ww' through the point w by a magnification p
and & rotation «;i. 6., in Figurs 1 the tangent # will
coincide in direction with T' by a rotation y=g—a.

Sea+Ih
Sratdh
Y Keaeh
S aq
R=c+3h
Rea+2h
H=a+h

Re=p

o ES

FIGURE 2.—Qrthogonal network obtained by & conformal transformation

This is also true for any other pair of corresponding
cirves through 2z and w, so that in general, angles
between corresponding curves are preserved. In par-
ticular, a ecurve 22"/ orthogonal to z2’ transforms
into & ecurve wnw'’ orthogonal to ww’

It has been seen that an analytic function f(2) may
be written P, y) -+ +Q{z, y) where the curves P = con-
gtant and @ =constant form an orthogonal system.
If then f(z) iz transformed conformally imto f(sr)
=P m)+iQ(E n) that is into flw()]=F(z)=R{x, 1)
+1i8(z, ¥}, the curves Pz, y) = constant, §{, ¥)=con-
stant map into the orthogonal networle of eurves
Kz, y)=conztant, S(z, ) =constant. (Fig.2.} Tfthe

magniﬁcaﬁonlgij‘ =p 18 zero at a point w, the trans-

formation at that point is singular and ceases to be
conformal,

We may use the method of conformal transforma-
tions to find the motion about & complicated boundary
from that of a simnpler boundary. Suppose wiz} is a
function which corresponds to any definite luid motion
in the # plane, for instance, fo that around a circle.

value of 2z, w(z) is uniquely defined. The function |

w(z) may be expressed as w=E+1iy where £ and 4 are ' Now if a new variable [ iz introduced and 2 set aquel
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to any snalytic function of ¥, say 2=7({), then w(z)
becomes w([f()] or W{r) representing a new motion in
the ¢ plane. This new motion is, as has been seen,
related to that in the z plane in such a way that the
stresmlines of the = plane are transformed by z=#(;)
into the stresmlines of the ¢ plane. Thus, the con-
tour into which the circle is transformed represents
the profile around which the motion W{¢) exists. The
problem of determining the flow around an airfoil is
now reduced to finding the proper conformsl transfor-
mation which maps a curve for which the flow is known
into the airfoil. The existence of such a function was
first shown by Riemann.

We shall first formulate the theorem for @ simply
connected region * bounded by a closed curve, and
then show how it is readily applied fo the region
external to the closed curve. The guiding thought
leading to the theorem is simtple. We have seen that
an analytic function may transform a given closed
region into another closed region. But suppose we
are given two separate regions bounded by elosed
curves—does there exist an analytic transformation
which transforms onc region conformally into the
other? This question iz snswered by Riemsnn's
theorem as follows:

Riemann's theorem.—The interior T of any simply
connected region (whose boundary contains moere than
one point, but we shall be concerned only with regions
having closed boundaries, the boundary curve being
composed of piecewise differentiable curves [Jordan
curve], corners at which two tangents exist being per-
mitted) can be mapped in a one-to-one conformal
manner on the interior of the unit circle, and the

analytic ¢ function {=#(z) which consummates this

transformation becomes umigue when a given interior
point 2 of T and a direction through z are chosen to
. correspond, respectively, to the center of the circle and
a given direction through it. By this transformstion
the boundary of T iz transformed uniquely and con-
tinuously into the circaumference of the unit circle.

The unit circle in this theorem is, of course, only a
eonvenient normalized region. For suppose the re-
gions 1% in the ¢ plane and 7T, in the w plane are
transformed into the unit circle in the z plane by
£=flz) and w=F(z), respectively, then T is trans-
formed into T by §=%&(w), obtained by eliminating =
from the two transformation equations.

In airfoil theory it is in the region external to a closcd
curve that we are interested. Such a region can be
readily fransformed conformally into the region in-
ternel to a closed curve by an inversion. Thus, let us
suppose & point 2 to be within & closed curve B whose

4 A region of tha complex plane is simply connested when any closad con tonr lying
entiraly within Lhe reghon may ba shennk to & peint without passing out of tha ragion.
O reference 3, p. 360, where o proof of the theorem based on Green's Minetlon s
given.

¢ Atrntion Is here directed (o the fagl that sn analylie funetion is developabile st
& point in & power serles comvergenk i any eircle about the polet and entizely
within the ragion. .
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external region is T, and then choose a constant %
such that for every point z on the boundary of I,
lz—zi>>k. Then the inversion ftransformation w=

—= will transform every point in the external region

I' into a point internal to a eclosed region T lying
entirely within B, the boundary B mapping into the
boundary of I, the region at infinity into the region
near z,. We may now restate Riemann’s theorem as
follows:

One and only one analytic function ¢ =7(2) exisis by
mesns of which the region I' external to a given curve
B in the { plane is transformed conformally into the
region external to a circle (' in the z plane (center at
#=0) such that the point z= » goes into the point

== and also 51{1—(:—)-=1 at infinity. This function can

be developed in the external region of € in a uniformly
convergent series with complex coefficients of the form

tmm=f@-m=z+2+3+2+ .. @

by means of which the radius B and alse the constant
m are completely determined. Also, the boundary B
of I' 15 transformed continnously snd uniquely into the
circumference of .

It should be noticed shat the, transformation (4) is
& normalized form of a more general series

f—m=aﬂ+a_12+tﬂ+a—§+ """"
z 2

and is obtsined from it by a finite translation by the
vector ¢ snd a rotation and expansion of the entire
field dopending on the coefficient ¢_,. The condition
@_;=1 is neceszsary and sufficient for the fields at
infinity to coincide in magnitude and direction.

The constants ¢; of the transformation are functions

of the shape of the boundsary curve alome and our

problem ' is, really, te determine the complex coeffi-

cients defining a given shape. With this in view, we

proceed first to a convenient intermediate trans-
formation.

' 2
The transformation =2z +%--—~This initial trans-

formation, although not essential to a purely mathe-
matical solution, is nevertheless very useful and
important, as will be seen. It represents also the key
transformation leading to Joukowsky sirfoils, and is
the basis of nearly 2ll approximadte theories.

Let us define the points in the [ plane by f=xz+1y
using rectangular coordinates (z, ¥), and the points in
the 2 plane by 2 =qae¥**¥ using polar coordinates
{aet, 8). The constant & may conveniently be con-
sidered unity and is added to preserve dimensions.
We have '

4
p=a4 ®)
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and substituting 2’ = get+¢
t=2a cosh (¥ +it) _
or {=2a cosh ¢ cos 8+ 24a einh ¢ sin @

we obtain

Sincc { =z +14y, the coordinates (z, y) are given hy
x=2a cosh ¢ cos # ©)
y=2a sinh ¢ sin ¢

If ¢=0, then 2'=0e¥ and =2a cos §. That is, if P
and P’ are corresponding points in the [ and z” planes,
respectively, then as P traverses the 2 axis from 2g to
—2a, P’ traverses the circle ae® from =0 to d=r,
and as P retraces its path to {=2a, P' completes the
circle, The transformation (5} then may be seen to
map the entire { plane external to the line 4¢ uniquely
into the region externsl (or internal} to the cirele of
radius @ about the origin in the 2z’ plane,

Let us invert equations (6) and solve for the elliptic
coordinates ¥ and 8. (Fig. 3.) We have .

¥ X,

br Iesltole

' Plane
Fravsg 3 —Transformation by elliptic eoordinakes

£ Flane

T
coch 5&“2@ toa #

i =¥ _
sinh ¢ 2a sin 8

and since cosh ¢ —sinh 2y =1

(aas) ~Gates) =1

or solving for sin® (which can not becoms negative),

T
2 sin® 8=p+.\/p3+(%)

p=i=(5) (%)

Similarly we ohtain

» 3 y 2—
(2a cosh qb) +(2+1 sinh 1&) =1

or solving for sinh ¢
2 sinh y= —p+ \/pz-;—(g)z ®)

We note that the system of radial lines 8=constant
become confocal hyperbolas in the ¢ plane. The circles
¢ =constant become ellipses in the ¢ plane with major
axis 2¢ cosh y and minor axis 2g sinh . These orthog-
onal systems of curves represent the potential lines and
streamlines in the two planes, The foci of these two
confocal systems are located at (£ 2a, 0).

0

where

Equation (8) yields two values of ¢ for a given
point (x, ¥), and one set of these values refers to the
correspondence of (z, ¥) to the point (ze¥, 8) external to
a curve and the other set to the correspondence of

- (=, i) to the peint {@e~¥%, — ¢) Internel to another curve.

Thus, in Figure 3, for every point external to the
ellipse K, there is a corresponding point external to the
circle €4, and also one internal to ¢\

The radius of curvature of the ellipse at the end of

. .. _ o sinh iy .

the major axis iz p=2¢ “osh v or for small values of ¢,
The leading edge is at

2a cosh ¢r=.s-'2a( 14 %2)324+ g-

Now if there is given an airfoil in the [ plane (fig. 4),
and it is desired to transform the sirfoil profile into a
curve as nearly circular as possible in the #° plane by
using only transformation (5), it is clear that the axes
of coordinates should be chosen so that the airfoil
appesrs as nearly elliptical as possible with respect to
the chosen axes. 1t was seen that a foeus of an
elongated ellipse very nearly bisects the line joining
the end of the major axis and the center of curvature
of this point: thus, we arrive at a convenient choice of
origin for the airfoil as the point bisecting the line of
length da, which extends from the point midway be-
tween the leading edge and the center of curvature of
the leading edge to a point midway between the
center of curvature of the trailing edge and the trailing.
edge, This latter point practically coincides with the
trailing edge.

The curve B, defined by ge¥*®, resulting in the 2’
plane, and the inverse and reflected curve B’, dafined
by @e”¥*, are shown superposed on the § plane in
Figure 4. The convenience and usefulness of trans-

pe=Zayt

Fiouke 4. —Tmmoslormation of alrfeil into a hearly ¢ireular contoar

formetion (5) and the choics of axes of coordinates
will become evident after our next transformation.

The transformation z'=ze °  .—Consider the trans-

formation &’ = z¢'® where f{z) = = (;,—': Each exponential
L]

Cu
term ¢ 2 represents the uniformly convergent series
1+&+i§§2+..._-1..&m+.‘. )]
2t 2\ m\ z"
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where the coefficients o,= A, +iB, sre complex num-
bers. For f{#) convergent at all points in & region
external to a certain circle, 2 has a unigue real abso-
lute value |zle"*®1 in the region and its imaginsry part
is definitely defined except for integral multiples of
2ri. When z= o, 2’=gz% The constant c,=d,+
Biy is then the determining factor at infinily, for the
aficld £ infinity is magnified by ¢* and rotated by the
angle By, Tt is thus clear that if it is desired that the
regions at infinity be identical, thatis, 2’ =z at infinity,
the constant ¢; must be zero. The constants ¢, and ¢y
also play important rdles, as will be shown later.
We shall now transform the ¢logsed eurve® 2’ = ge? ™"
into the circle z=ae¥*** (radius ae¥, origin st center)
by means of the general transformation (reference 2}

£u

e (10)

[ K

z'e=ze

which leaves the fields at infinity unsltered, and we
shall obtain expressions for the constants ., By, and
¥o.  The justification of the solution will be assured by

o
the actual convergence of T

—r—cy

1

since if the solution

exists it is unique.
By definition, for the correspondence of the bound-

ary points, we have
o ze"'_‘f'o +i{f - )

(10%)

S(A,+iByL
1 £n
Also 2’ =ze
Consequently
. kg . 1
v ti(f— o) = EI(AI! + lBiw)?
where g=gefpt

On writing z==R{eos ¢+t sin ¢) where B —ae¥, we
have

¥~ Yot {0 — ) = Z(d, +iBa) 1008 mp—i sin )
1

Equating the real and imaginary parts of this relation,
we obtain the two conjugate Fourier expansions:

¢_¢0=%[£$ ©os ﬂ(p+%3il’1 ncp]. (11)

bl i1 ;P
B—p—?[ﬁ’:mncp—ﬁ sin 'Rgﬂ] (12)
From equation {11}, the values of the coefficients %x

%. and the constant ¢y are obiained as follows:

a2
A 1 AT
fi it .6"4’ cos ne de (a)
B, 1%m
R‘:=; {\f’ sin g de (b)

7 Unlezs otherwize stated, ¢ and @ will now he used in Lhis restricted sense, i, &., 6g
defining the Loundary sorve Ltgell, aud nol all pafits In Lthe 2* plane.

1 O

%:2_:-‘6(' Yde {c)

The evaluation of the infinite number of constants
as represented by equations (a) and (b) can be made
to depend upon an important single equation, which
we shall obtain by eliminating these constants from
equation {12).

Substitution of (a) and (b) for the coefficients of
equation (12) gives

1 £ 2 .
(9—¢)’=; ;2 cos ng’of ${p) sin ne de

o
—sin ne’ 6!‘ ¥ip) cos ne de

where ${p) =y and (§ —¢)’ represents § —¢ as a func-
tion of &', and where o' is used to distinguish the angle
lcept constant while the integrations are performed.
The expression may be readily rewritten as

o 211'
(B—qo)'=% l;a {sb(qo] (sin nyp cos ne” —cos ne sin ne’ )y
120 '
= = Sl sinalpo o) de
tg
But

4

cos (Cr+1) (—“—’%0

# 1 —
Toin nlp—o) =5 cot £F
- lg—¢7) 2 7 —

9
28l 5

Then

e—¢'
pia

- lim 11
fi=—s o 129y

27
{#—e)’ bf\i'{w) cot de

1 27 cos(Za+1} {—"3%9—}
_ﬂéf\b{‘lg) ¥

P
sin
2

de

The first integral is independent of n, while the latter
one becomes identically zero.

Then finally, representing ¢—8 by a single quantity
e, Viz p— f=e=¢(p), we have

2'4" r
n=-l e—¢
elp) = 2«({‘”’”’) 0ot - dg (13)

By solving for the coefficients in equation (12) and
substituting these in equation (11) it may be seen thal
a similar relation to equation (13) holds for the func-
tion (g},
v—¢

2

) i 27 1 27
') = Q—;rofe(?) cot de+ 2—;6]\&(40)01@ (14)

The last term is merely the constant i, which is, as
has been shown, determined by the condition of mag-



GENERAL POTENTIAL THEORY OF ARBITEARY WING SECTIONS

nification of the 2z and z' fields st infinity. The

211'
corresponding 1ntegral = f e(p) de does not appear in

equation (13}, being zero as 4 necesgary conseqience
of the coincidence of directions at infinity and, in
general, if the region at infinity is rotated, is a constant
different from zero.

Investigation of equation (13).—This equation is
of fundamental importance. A discussion of some of
its properties iz therefore of interest, Ii should be
first noted that when the function y{y) is considered
known, the equation reduces to a definite integral.
The function ® ¢{g) obtained by this evaluation is the
“eonjugate’ function to ¢ {s), so called because of the
relations existing hetweenn the coefficients of the
Fourier expansions as given by equations (1£) and (12).
For the existence of the integral it is only necessary
that ¥(¢) be plecewise continuous and differentiable,
and may even have infinities which must be helow
first order. We shall, however, be interested omiy in
continuous single-valued functions having a period 2,
of a type which result from rontinuous closed curves
with a proper choice of origin,

If enuation (18) is regarded as a definite integral, it is seen
te be related to the well-known Poisson integral which solves
the following Boundary-value problem of the cirele.  (Reference
3.) Given, say for the z plane a single-valued function u(R,r}
for points on the eircumference of g eivcle w=Re" (center at
origin}, then the single-valued continnous potential function
wir,e) in the external region z=re* of the circle which assumes
the values 1 (R, 5} on the circumlerence is given by

2
1 e B3
=gz s R B ARy cos =

and sitnilarly for the conjugate function v(r.s}

9 1R
R4 ri—2Rr cos (p-—r)

1 2r
n(f‘,cr)—é-;_)u‘ w{it,
These may be writlen as a single equation

1lr z+w

u(rg)-]-w(r a)==f(z) ZIC f(W} .
where the value f{z) st a point of the externsal region z=re¥ is
expressed in terms of the known values f(i) along the cireum-
ferénce w=Rei®, In particular, we may note that at the
g¥ 4 gir {or—7)

boundary itself, smcet propmprriadlicl Bt

, We have

. R
wil, o) +£U(qu):.—% 6‘ [uife,r) +iviR,7)] cot: (0‘;‘71 dr,

which is & special form of equations (13) and {14).

The quantity ¢ is hmmediately given as a function
of § when a particular closed curve is preassigned, and
this iz our starting point in the direct process of trans-
forming from airfoil to cirele. 'We desire, then, to find
the quantity ¢ as a function of ¢ from equation (L3},
and this equation is no longer a definite integral but an

£ This fnction will be called *‘conbiemal angular dlstoction® {unction, for reasens
evident Tater.

integral equation whose process of solution becomes
more intricate. It would be surprising, indeed, if
anything less than a functional or imtegral equation
wera involved in the solution of the general problem
stated. The evaluation of the solution of equation (13)
is readily accomplished by a powerful method of suc-
cessive approximations. It will be seen that the
nearness of the curve a¢¥+® to a circle is very signifi-
cant, and in practice, for airfoil shapes, one or at most
two steps in the process is found to be sufficient for
great aoouracy.

The guantities ¢ and ¢ considered as functions of ¢
have been denoted by ¢{¢) and e(w), respectively.
When these quantities are thought of as functions of 8
they shall be written as $(9) and €(8), respectively.

Then, by definition

V(&) =« 0)] (15}
snd 2(0) =ele(6)]
Since p—fF=¢, we havé
Ble) = o —ele) ,
o{8) =0+ &) } (16)

We are seeking then two functions, ¥ (o) and e(y),
conjugate in the sense that their Fourier series expan-
sions are given by (11) and (12), such that ¢fe(#)]=
J(#) where ¥(&) is a known single-valued function of
period 2.

Integrating equation (13) by parts, we have

»)=‘_ f logsm ¥ WP d’l’("ﬂ) de (13"}
e—¢
2
¢=27+¢’, but we may use the interval 0 to 2% for ¢
with the understanding that only the real part of the
Jogarithm is retained.
Let us write déwn the following identity:

The term log sin ig real only in the rangas =" to

— o

in £7¢ Z1og sin 255
log sin 2 =log sin 3
AR Rl GV sin{a+zg)—2(a+zg)'
+log =6 *log - @ta)—(te)
5in ) =1 —'“‘—'2
sin (#+E) —2(8 )’
ce 17
Tl S Ry a7
n -
2
[ Y] S —(p+ay!
IRl Gl ) sin (9+e)2(!9 8
g e = Gray % Gral Gray
2 2

where in the last term we recall that ¢+ e(#) = »(8); and
where it may be noted thab each denominator is the
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numerator of the preceding term. The symbols &
(=1, 2, ..., n) represent functions of 4, whieh thus
far are arbitrary.?

Since by equation (15} ¥(8) =] we have for
corresponding elements 46 end de

dele) 5, _de®)
de de= ) dé

Then multiplying the left side of equation (17) by

i dﬁ((’a) d¢ and the right side bv ! dM ) de and inte-

grating over the pcnod 0 to 2% we obtam

g—8 dy:(9)
3 T‘dﬂ'l' P

sin—(“- Al Gk Y
2 dv ) de+
[9"‘& = f9+ek-l} de T

o@))=z(#) =~ .,f‘ log sin ——

L2
+ N log
o

{0+ e(a)) — (O+2())
2 d¢ @

inta)—@te) df
2

21|- Siu
+ f log—

ds  (13)

where k=1,2, . . ., n.
We now choose the arbitrary functions &(6') so that
200" =
and 2 ‘
T = —_ F] ’
& (9") == ./‘ log sin 1 80) 2(3“*—') —a—d.w ff) de (19

where k— 1,2, ..., mn.
Equation (18) may then be written

) =6+a+ (@—3) . . . +E—T)+F(E-E) (20)
oT O =MTht ... MEA

where M(8')=%—%&.-, and is in fact the &*™ term of
equation (18). The last term we denote by A,

From equation (19) we see that the function (") is
obtained by a knowledge of the preceding function
&-1(¢"). For convenience in the evaluation of these
functions, say

2
B8] =-11; ,5 log sin B2 2(9+‘k dﬁgﬁ} a9
we introduce a new variable ¢ defined by

wr(8) =6+ %(6) I &k=1,2,...,n0)
Then

Trldle i)} =etenile’s

(21)
_1%F (e ey) A(0(0)]
- { log sin = o, dee

From the definition of ¢, as
e:{f) =0+5.(8)
4 The gymixd (#+2¢)" reprasents ¢ +a:(&) and is used Lo denoke the same Mupetion

ol ¢ that #4+2x(@) 13018, The variablagé and & are regarded os independent of énch
other.
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we may also define the symbol ¢.(oy) by

5(%) il (m)

where
28 =eu[ipe(8}]

It is important to note that the symbols %, ¢, e*
denote the same quantity considered, however, as a
function of 8, ¢y, ¢\, respectively.

The quentities (g—%&-) in equation (20) rapidly
appresch zero for wide elasses of initial curves ¢(9),
i e, #8(e)} very nearly equals ¢{8(e.;4)] for even
small k’s. The process of solution of our problem is
then one of obtaining successively the functions §(8),
Foiedl, d0e)], . . . . $l8{e)) where ¥[8(e)] and
E.[0(¢.}] become more and more *econjugsate.” The
process of obtaining the successive conjugates in prac-
tice is explained in a later paragraph. We first pause
to state the conditions which the functions ¢, are sub-
ject to, necessary for a one-to-one ¢orrespondence of
the boundary points, and for a one-to-one corre-
spondence of points of the external regions, i. e., the
conditions which are necessary in order that the
transformations be conformal.

In order that the correspondence between boundary
points of the circle in the # plane and boundary peints
of the contour in the 2° plane be one-to-one, it is
necessary that 8(p) be 2 monotonic ineressing function
of its argument. This statement requires a word of
explanation. We consider only values of the angles
between 0 and 2Zx. For a point of the eircle boundary,
that is, for one value of ¢ there can be only one value
of 8, 1. e., #(p) is always single velued. However, ¢(9),
in general, does not need to be, as for example, by a
poor choice of origin it may be many valued, a radius
vector from the origin intersecting the boundary more
than once; but since we have already postulated that
¥{0) is single valued this case can not eccur, and »(8)
iz also single va.lued If we decide on a definite diree-

tion of rotation, then the 1nequahty a—- 2 (b expresses

the statement that as the radius vector from the origin
sweeps over the boundary of the circle ¢, the radius
vector in. the 2 plane sweeps over the boundary of B
and never retraces its path.

The inequality

d_,_ dele)
do= 1 do z0
corresponds o
de(e) o,
de =
Al=o, the condition
d dz(th
g =1t g =0
corresponds to
da(e} -1

“do =
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Multiplying i—i by % we get

(-4 (1)

This relation is shown in Figure 5 as a rectangular

tde
|3
L&
‘
: - - .9
2= Ao 2 dd
( -f
-2
L]
Flaene 5—"The quantity :;:]'_ 4% 0 fanction 0(2—9
hyperbola. We may notice then that the monotonie

behavior of ¢{f) and #{p) requires that ad—; remnain on
the lower branch ¥ of the hyperbola, i. e.,

It will be seen later that the limiting values

de(e defe) . dE de

dqo)=1’ de “(l' S de” Trde _1)
correspond to points of infinite velocity and of zerc
‘velocity, respectively, arising from sharp corners in the
original curve.

The condition for a one-to-one conformal corre-
spondence between points of the external region of the
cirele and of the external region of the contour,in the
z’ plane may be given (reference 5, p. 98 and reference
6, Part II) as follows: There must be & one-to-one
boundary point correspondence and the derivative of

w Oy
. I3 z 7=

the snalytic function 2’ = ze'
mmsgé not vanish in the region,

given by equation (10}
That is, writing g(=)

fors t2 we have
-4

%:‘”""(1“ dq(z)) #0 for [2|>E or since

the integral transcendental function ¢**? does not vanish
in the entire plane, the condition is equivalent to

dg(z) | _
P = —1 for |z| =B

1 The values of the npper branch of the hyperbolr arise when the region lnternal
o b grrve oe #4070 L oeansformed indo dhe ecteroal region of a cirele, but may slso
thore be avolded by deining em o+4# Instead of p—~,

ANTRE—H4 13

(22)

By equation {10’} we have on the boundary of the

- civele, g{Re') = ¢ — ¥, —ie, and

dsr(Z) — Rt [W(w) —e(e}]

s Rele d¢
_delg)_d¥le)
de de

the first term on the right-hand side being real and the
last term a pure Imagmary. We have already postu-

lated the eondition

de
—w $d—¢£1

as necessary for a one-to-one boundary point corre-

spondence, Now by wriling z=§+14y and zdg ) _

dE(rp)

P +4Q(E ), we note that gives the bounda,ry

values of & harmonic function P (E,n) and therefore this
function assumes its maximum and minimum values
on the boundary of the eircle itself. (Reference 3, p.

dgi()

223} Hence a=q, °an never. become —1 in the

. . dz’ sk .
external region, i. e., 1, o0 mever vanish in this

region.

At each step In the process of obtaining the succes-
sive conjugates we desire to maintain a one-to-one
eorrespondence between # and ¢, i. 6., the functions
#ioy) snd ¢ (@) should be monotonic increasing and are
hence subject to a restriction similar to equation (22),
viz,

—wmdn o
do, =

The process may be summed up as follows: We con-
sider the function ¥#(® as known, where ¥{¢) is the
functional relation between ¢ and @ defining & closed
curve ae?t®  The conjugate of ¥(8) with respect to 8
is (). We form the variable ¢, =8+&{(8) and also
the function ¥[¢{w)]. The conjugate of $[#(p)] with
respect to ¢ 1s ¢*:(e) which cxpressed as a function of
§ i3 (). We form the variable g, =#+&(#) and the
funciion #[#(w,)]. The conjugate of ¥[#(e)] is e*5(wy),
which as a function of # is &(4), ete. The graphical
eriterion for convergence iz, of course, reached when
the function ##(e.)] is no longer altersd hy the
process. The following figures illustrate the method
and exhibit vividly the rapidity of convergence. The
numerical calewlations of the various conjugates are
obtained from formula T of the appendix.

In Figure 6, the @(# curve represents a circle re-
ferred to an origin which bisects a radius {obtained
from an extremely thick Joukowsky airfoil) {seep. 200)
and has numerical values approximately five times
greater than ccour for commeon airfoils. The ¢(p)
curve is known independently and is represented by
the dashed curve. The process of going from ¥(8) to
¥{¢) sssuming ¥(¢) as unknown is as follows: The
function 7 (@), the conjugate function of ¥{8), is found,

22)
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The quantity ¥ is then plotted against the new variable | is drawn at P’. This process yields the funetion % (8).
e =0-+%(8) (i e., each point of §(8) is displaced hori- | The quantity ¢ is now plotied against the new variable
zontally a distance 7} and yields the curve ¢[#{e)]. | =6+ (® {. ., each point of ¢(8) is displaced hori-
(Likewise, (9) iz plotted against ¢ yielding &(p;).) | zontally a distance %) piving the funetion ¥[8(py)].

5 = Tﬂ:“"_‘ M~ €1y
| \ \‘{ 219
RN
I A
12}
& -
I 3 \§ -
| N \\ e
L . o =
-5l \\"'\\ . | / ;
| e ;
i
i i
d }
_I.__-
%-‘“‘-\-\. s
1o e 1= s e
I ™ e 1 #ees )P %
v{w'm?‘rk‘p\ )%
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3 \ N, Vi
b 1\ ;.f i
L \\\ \"e“ y / - // :
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: \-k*\..__ prav i
& =) Lo 2 ga 25 FO = 35 40 oF.5 80 a5 &0 &

Argumeni (8, g, ¢, ¢ in rodions)
Fiaure é.—The process of oblaining snecessive ronjugates
The function ¢*{p) is now determined as the conjugate

function of ¥[8(s)]. Thiz funetion expressed as a
function of #is e*[ ¢ (6} =&(6). Itis plotted asfollows:

This curve is shown with small circles and coincides
with ${¢). Further application of the process can
yield no change in this curve. It may be remarked

-0 T )
/0 ® JZN s ‘--f?‘;\‘*:""l“” JEANY L1730
' AR TS AR TS
| ¥ 4
o .
NE ALY EENE EELW)
— O H ‘n‘ Ny "f \‘\ "f 1.9 ”:’
-_?o
40 -
ol R 07 NP B N R
. S Y ] 7 Ly Py \\‘ ,'/ v
20— :’{_[ \ 1 P d] Y“. a"/ 0, il AN
. .’,/ \ -“ — ‘; 7 \\,‘ Fd / \ 3 7 / \“
7] "/ \ “ '-" Vi \\‘ ‘I‘{ \ \‘a‘ ft_/ R \‘.
; \ ) / \.\ ”c \ '/ ‘\
¢ E ™ S 2n
-

Freune 7.—Process applisd to trapsforming & sqUare into 8 virela

At a point P of €%, (1) and @ of ¢{p)) corresponding to | here that for nearly all airfoils used in practice one
a definite value of ¢, one finds the value of # which | step in ths process is sufficient for very accurate results.
corresponds to ¢ by a horizontsal ine through @ meet- As another example we shall show how a square
g #(®) in ¢'; for this value of 9, the quantity ¢ at P | (origin at center) is transformed into & circle by the
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method. In Figure 7 the §(#) curve is shown, and m
Figure 8 it is reproduced for one octant.!! The value

is ¢(M=log sec 8. The function ##{x)] is shown

dashed; the function §[6(¢»)] is shown with small
crosses; and ¢[#(w;)] is shown with small ¢ircles. The
solution ${p) is represented by the curve with small
triangles and is obtained independently by the known
transformation (reference 3, p. 375} which transforms
thoe external region of a square into the external region
of the unit cirele, as follows:

w(z) = f’/%:—zjdz= z[l + P(%)]

where P(i) denctes a power series, Comparing this

with equation (10), we find that ¥(p) except for the
constant ¥ is given as the real part of log [1 + PG;)]

evaluated for z=¢t, and that e(¢) is given as the
negative of the imaginary part. _It may be observed
in Figure 8 that the function ¥{6(e)] very nearly

35—
A7
A !‘-’ 9(?’2)] ‘ o
.30 18ip, )
a g[ﬁ")% o /

E5 /!5

)
n

20 an
v ' Aol | ]
A1
45 4 7 /
. r {” A
e £ 4
_ 7
.05 Zdl .y
= /
a ]
—— |
g 5 6 7 1@
Argurnartt (8,9, 9.9 #7 Fodians) v 7

FIGURE § —Procgss applied to transforming & squere intoe s circle
equals ¢(p). The functions e{¢) and &) are shown in
Figure 7 {a); wé may note that at e=2 -which corre-

d
sponds to & corner of the square, £=1 or also,

a_
de

1 Beopuza of ths sy mmetry Invelved only the irnterval 0k 1-; Teadd be used. The
integtal In the appendix can be treated as

1% Fit
e(d']='~.zrﬁf‘\¢r(w) cotb 5= de

T
. 1
=3 .Df‘ Flwdient 2= =00t et t e

It may be remarked that the rapidity of convergence
ie influenced by certain factors. It is noticeably af-
fected - by the initial cholce of #(#). The choice
§(#) =0 implies that # and ¢ are considered to be very
nearly equal, i. e., that ge¥** represents a nearly cir-
cular curve., The inisial transformation given by
equation {5) snd the choice of axes and origin were
adapted for the purpose of obitaining a nearly circular

P = gegti?
G- aevt

(k)

Frivke 8.—Treaslation by the distancs O

curve for airfoi] shapes.,* If we should be concerned
with other classes of contours, more appropriate
initial transformations can be developed. Tf, how-
ever, for a curve ae¥*¥ the quantity «=»—¢ has large

- walues, either becanse of a poor initial transformation

or because of an unfavorable choice of origin, it may
occur that the choice &(0) =0 will yield a funetion

& (@) for which g—% may excead unity at some points,

thus violating condition (22°). Such slopes can be
replaced by slopes less than unity, the resulting fune-
fion chosen as #{#) and the process continued as
before.” Indeed, the closer the choice of the funetion
&(#) is to the final solution €{8), the more vapid is the
convergence. 'The case of the square illustrates that
even the relatively poor choice §(¢) = 0 does not appre-
ciably defer the convergence.

The translation z=z+c.—Let us divert our
attention momentsrily to another transformation
which will prove useful. We recall that the initial
transformation (eq. (6)) applied to an airfoll in the |
plane gives a curve B in the 2’ plane shown schemati-
cally in Figurs 9(z). Equation (10) transforms this
curve inte a cirels ¢ about the origin 0 as center and
yields in fact small values of the quantity ¢—8. We
are, however, in & position to introduce a convenient
transformation, namely, to translate the cirele € into
a most favorable position with respect to the curve B
(or vice versa). These qualifative remarks admit of a
mathematical formulation. It iz clear that if the
curve B itself happens to be a circle ® the vector by
which the circle ' should be translated is exactly the
distance between centers. It iz readily shown that

" The first skl in the process i9 vow to defime ar=>6+a(8) God form the fyuction
Holan]. The confugete (anction of FI(zl] IS # s} Which exprassed a9 & Tuoction
of 8 Is 2,(8), ete.

13 Bae p. 20
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then equation (10) should contain no constant term.
We hava

-4
z‘i; (10)
2 =ze |
=z(1+§+§i§) )(1+ ff*‘)
(1+§+ - )etc.
-—z(l+—-+z,+ ) (108)
where 14
k.=cl
2
kz“(’s"r‘%

It is thus apperent that if equation (10) contains no
first harmonie term, 1. e., if

R2T
c|=AI+?:B|I - ;{#&‘wdfp=0,

the transformation is obtained in the so-called normal

form
d, o

-4 —z.+ + ,+ (23)

This translation can be effected either by substituting
a new variable z,=2+ ¢, or a new varisble 2/ =2"—¢,.

i

5]

Lo g |
O 5 M0 s 20 25 r 35 &40 45 B0 55 Pn
888

FIGURE 10.—The §i#) and $i(f) corves (for Clark Y airfoll)
This latter substitution will be more convenient at
this time. Writing
) =qettit o mgert® and 2f = gett®

wo have
MWJ‘]‘F“‘[ =M‘a+l§ —_ ae-y'i-f&

The variables ¥, and 8,, can be expressed in terms of
¥, 0, v, and 3. Tn Figure %{b), ' iz & point on the B

T heso constants can ba ohialned in a recursien i,  36e feotnote 1§,
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curve, i. e, OFP=ge¥, PQ represents the translation
vector ¢y=aerti, 0 is eet®, and angle POQ is
denoted by p. Then by the law of cosines

e =g g% —2gbev cos (§—0) (a)

and by the law of sines

. esin (94}
ex—* 3in {§—&)
- -1
or =ftu=dttanT ;= o5 -5 (b}

In Figure 10 aye shown the ¢(#) and &(8) eurves for the
Clark Y airfoil (shown in fig. 4) and the §,(6,) and
f(f1) curves which result when the origin is moved
from ¢ to M. It may be noted that &(8,) is indeed
considerably simaller than #(8). It is obtained from

p 2=
(=)= — 5 f () cot Y 4o

and the constant ¥ is given " by
1 211'
=5 .{; fi(p)de

The combined transformations.—It will be useful to
combine the various transformations inte one. We
obtain from equations {5) and (10) an expression as

follows:
7, S
t=2a cosh logg+ fz—“

or we can salso obtain s power series development in =

(24)

f=et D +z,,+%§+ <o 25)

where? = Fpr + 0 Rt

The constants &, may be obtained in & convenient
recursion form as

k] =
g =k +2¢;
3&'3 = kgcl -2k + 3
4-{’4 = k3€1 + 2)'(728? + 3}6]03 + 4.04

The constants k, have the same form as k, but with
each ¢, replaced by —e¢, (and A,=1). It will be re-

# The eonstant ¥o ls invariant to change of origin. (See p. 200.) It should be
retnavked that the translation by the vacter oo I8 enly & mosteer of cenvenience and
is especially useful for very irregniar shapes. Fov a study of the properties of airfoil
shapes we shall uee ouly the orizinel «lwh curve, (Fie. 1000).)

W By aquationa {5 snd {1 we have

e

"
-zt
1

s

z
I
fmze ! +—

'

F1]
The corstant by is thits the coefficiant of zl‘ intheexpansicnole *  andthe constans
_Fea
ha the coaficlant o!' 1, - in the expansion of ¢ lzn. For the recursion form for kn
sep Bimikhisehian Mat’mmncsl Formuls and Tables of Elipile Fuockions, p. 120
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called that the values of ¢, are given by the coeflicients
of the Fourier expansion of ¢(g) as

Fs- f vple™dy where B=aett

and
1 27
_2— S '!'/(P)d@
0
The first few terms of equation (25} are then as
follows:
& o
e+ 2 +a5‘+cs+cgcl+ 6 —¢
z

&
= Wy ... (25)

F=zte+

By writing 2z, =z+¢, equation (25) is cast into the
normal form

= zl+b:+26§+

(26)
The constants b, may be evaluated directly in terms
of &, or may be obtained merely by replacing ¥{e) by
¥1 (@) in the foregoing values for a,,.
The series given by equations (25) and (26) may be
mverted and z or 2 developed as a power series In §.
Then

. _Gtae et 26 tatal
efy=i—¢ ¢ F o 2D
and

_a b b b+B?
7()=¢ e 7 o 28

The wvarious transformations have been performed

~ for the purpose of transforming the flow pattern of a
E‘ / | ' \\ af
\ Fo_—— L 7
X [ 7
N Iy

FizUre 11 —Streamlioes shoot crce with zere eirenlalion (shewn by the fon
lings) §=—V'sinh psin p=constont

cirele inte the flow pattern of an airfeil. We are thus

led immediately to the well-known problem .of deter-

mining the most general type of irrotational flow

arcund & circle satisfying certain specified boundary

eonditions.

The flow about a circle.—The boundary conditions
to be satisfied are: The circle must be a streamline of
flow and, at infinity, the velocity must have a given
msagnitude and direction. Let us choose the £ axis as
corresponding to the direction of the velocity st

infinity. Then the problem stated is equivalent to
that of an infinite circular cylinder moving parallel to

_the £ axis with velocity Vin 8 fluid at rest st infinity.

The general coruplex flow potentiai ¥ for a cirele of
radius B, and vewocity at mﬁmt.y V parallel to the x

axis is
w(z)= —V(z-l— )-— = logR

where I' is a real constant parameter, known as the

(29)

Frgure 12 —Streamlines about eirels for V=@ Q= —21{1=constant

cireulation. It is defined as 3§v,ds along any closed

curve inclosing the cylinder, #, being the velocity
along the tangent at aach point.

Writing 2=Rert** and w=FP +i¢, equation (29) be-
comes

=—V eosh{p+ip)~ -—(#-l-w) {20)
or P=—V cosh x cos q0+2—n_¢'
@= =V sinh u sin gy
For the velocity components, we have
i o= —V(1-% = (30)

In Figures 11 and 12 are shown the streamlines for

{ the cases I'=0, and V=0, respectively. The eylinder

experiences no resultant force in these cases since all
streailines are symmetrical wich respect to it.
The stagnation points, that is, points for which u

and  are hoth zero, are obtained as the roots of ‘é—‘;zo‘
This equation has two reots.

5= il & 16 B2V — I*
. o 47V
and we may distinguish different types of low accord-
ing as the diseriminant 162°R*V?—I? is positive, zero,
or negative. We recall here that a conformal trans-
formation w=75(z) ceases to be eonformsl st points

whete il: vanishes, and st a stagnation point the flow

divides and the streamline possesses a singularity. .

17 Refgremce 4, p. 50 or reference 5, p. 118. ‘The log term most be sdded bacanse
theé region ontside the infinite cylinder (the poiat at infinity exchided) is doably
nonnsaled and thersfore we must inelude the peesibility of eyelic moldon,
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The different types of flow that result according
as the parameter I‘*%lﬁn’R*V” are represented in

Figure 13. In the first ease (fig. 13 (a)}, which will not
interest us later, the stagmation point occurs as s
double peint in the fluid on the 4 axis, and all fluid
within this streamline eirculates in closed orbits around
the circle, while the rest of the fluid passes downstream.
In the second case (fg. 13 (b)), the stagnation points
are together at S on the circle Re*® and in the third
case (fig. 13 (c)} they are symmetrically located on the
circle. We have noted then that as T increases from
0 to 4zRV the stagnation points move downward on

the circle Re'? from the &
axiz toward the 5 axis.
Upon further increase in
T they leave the circle and
are located on the 4 axisin
the finid.

Conversely, it is clear
that the position of the
stagnation peints can de-
termine the circulation I'.
This fact will be shown to
be significent for wing-
section theory. At pres-
ent, we note that when
hoth 'and V08 marked
dissymmetry exists in the
streamlines with respect to
the circle. They aresym-
metrical about the 4 axis
but are not symmetrical
about the ¢ axis. Since
they are closer togetheron
the upper side of the circle
than on the lower side, a

FIAURR 13.—Streamlines about elrela
[troma Lagally—Handbugh der Physik

BA. VII ¢ = Vsinh o Sin pmgos=con-

resultant force exists per-
pendicular to the motion.
We shall now combine

stant (8) 112> 16052 Vi (b) [i=14ri R V2
(e) I MxtieVY

the transformation (27)
and the flow formula for
the cirele equation {29) and obtain the general complex
flow potential giving the 2-dimensional irrotational flow
about an airfeil shape, and indeed, about sny closed
curve for which the Riemann theorem applies.

The flow around the airfoil—In Figure 14 are
given, in a convenient way, the different complex
planes and transformations used thus far. The com-
plex flow potential in the z plene for a circle of radius
R origin at the center has been given as

w(z)=-— V(z + Rgx)—%log z

where V, the velocity at infinity, is in the direction of
the negative ¢ axis. Let us introduce a parameter to

(29)
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permif of a change in the direction of flow at infinity
by the angle & which will be designated angle of attack
and defined by the direction of flow at infinity with
respect to a fixed axis on the body, in this case the
axis ¢=0. This flow iz cbisined simply by writing
ze** for z In equation (29) and represents a rotation of
Y § Fiane

/_;b,——"’"
{3 | OLeM | Lo

Fil
=
“,
o
o
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\ Flane =
oM
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e

EquotionsiPs)and(f7)}

E£q.010
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F1oURE 14.—~The collected transformations

the entire flow field about the circle by sngle . We
have . .
w(z)=— V(ze“' +1-§—s— ‘“) —;’—f‘rlog z (31)
dw_ .
E-u w
" _ i
- —Ve‘“(l—?e o)t (32)

Since a conformal transformation meps streamlines
and potential lines into streamlines and potential lines,
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we may obtain the complex flow potentisls in the
various planes by substibutions, For the flow about
the circle in the z plane, z is replaced by z—e

— i
wie)= =V [ amederes gy |- loglar—a) (319
dw Ty Rere ir )
&=~V [1 cu)*] ey D)

For the flow about the B curve in the z° plane, 2z is
replaced by z(¢') (the inverse of eq. (10a)} and for the
flow about the airfeil in the § plane = is replaced by
2{{) from equation (27}

W)= = Vie(s)o+ Je ] =52 log 20)  (39)

Bogtie i W)
=L v ) s Jag)
The flow fields at infinity for all these transformations
have been made to coincide in magmitude and direction.

At this point attention is directed to two imporiant
facts, Pirst, in the previous analysis the original
closed curve may differ from an airfoil shape. The
formulas, when convergent, are applicable to any
closed curve satisfying the general requirements of
the Riemann theorem. However, the peculiar ease of
numerical evalustions for streamline shapes is note-
worthy and significant. The second important fact is
that the parameter I' which as yet is completely nnde-
termined is readily determined for airfoils snd to-a
discussion of this statement the next section iz devoted.
It will be seen that airfoils may be regarded as fixing
their own circulation.

Kutta-Joukowsky method for fixing the circula-
tion.—A!ll contours used in practice as airfoil profiles
possess the common property of terminating in either
a cusp or sharp corner at the trailing edge (a point of
two tangents). Upon transforming the circle inte an

alrfoil by {=7(z}, we shall find that 13—?‘ is infinite at

the trailing edge if the tail i perfectly sharp (or very
large if the tail is almost sharp). This implies that

dﬂ

34

the numerical value of the velocityldat—:”%% =|¢[ is

infinite (or extremely large) provided the factor1%|

is not zero ab the tail. There is but one value of the
cirenlation that avoids infinite velocities or gradients
of pressure &t the tail and this fact gives a practmal
basis for fixing the circulation.

The concept of the ideal fluid im irrotational poten-
tial flow implies no dissipstion of energy, however large
the velocity at any point. The circulation heing a
measure of the energy in a fluid is unaltered and inde
pendent of time. In partieular, if the circulation is
zero to begin with, it can never be different from zero.

However, since all real fluids have viscosity, s hatter

| physical concept of the ideal fluid is to endow the

fluid with infinitesimal viscosity so that there is then
no dissipation of energy for finite velocities and pres-
sure gradients, but for infinite velocities, energy losses
would result. Moreover, by Bernoulli’s principle the
pressure would become infinitely negative, whereas a
real Alvid can not sustain absolute negative pressures
and the assumption of incompressibility becomes in-
valid long before this condition is reashed. It should
then be postulated that nowhere in the ideal fluid from
the physical concept should the velocity become

infinite. Xt is clear that the f&cbor!(‘}l—t:l must then be

zero ab the trailing edge in order to aveid infinite
velocities. It iz then precisely the sharpness of the
trailing edge which furnishes us the following basis for
fixing the civculation.

It will be recalled that the equation 3—;—0= ¢ deter-

mines two stagnation points symmetrically located on
the eircle, the position of which varies with the valua
of the circulation and conversely the position of a
stagnation point determines the cireulation. In this
peper the z axis of the airfoil has been chosen so that
the negative end (6=x) passes through -the trailing
edge. From the calculation of e=¢—8 (by eq. (13))
the value of ¢ corresponding to any value of ¢ is deter-
mined as ¢ =84 ¢, in particular at 8 ==, ¢= =+ §, where
f is the vilue of € at the tail and for a given airfoil is a
geometric constant (although numerically it varies
with the choice of sxes). This angle 8 is of consid-
erable significance and for good reasons is called the
angle of zero lift. The substance of the foregoing
discussion indicates that the point z=Rei'"*® = — Re®
is a stagnation point on the circle. Then for this value
of 2, we have by equation (32)

dw o V- BeTMEy 4T
dz =~ Ve ( 2 T 27z 0
or = —QwRV%BH“"'m (1 - 6—9((«4—&)}

otlakpy — o=tk

=47RV sin (a+§) (35)

This value of the circulation is then sufficient to
make the trailing edge a stagnation point for any value
of . The airfoil may be considered to equip itself
with that amount of circulation whieh enables the
fluid to flow past the airfoil with a minimum energy .
loss, just as electricity flowing in a ilat plate will dis-
tribute itself so that the heat loss is a minimum, The
final justifieation for the Kutta assumption is not only
its plausibility, but also the comparatively good agree-
ment with experimental results. Tigure 15 (b) shows
the streamlines around an sirfoil for o flow satisfying
the Kutta condition, and Figures 15 (a) and 15 (e) illus~
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trate cases for which the circulation is respectively too
small and too large, the staghation peint being then on
the upper and lower surfaces, re-

— spectively. For these latter cases,
—— @ == (@ the complete flow is determinable
——  only if, together with the angle of
e attack, the circulation or a stag-
== (v nation point is specified.

P Velocity at the surface.—The
——==—"um~  flow formulas for the entire field
%:(c) are now uniquely determined by
I —— substituting the value of Tin equa-

tions (33) and (34). We are, how-
ever, in a position to obtain much
simpler and more convenient re-
lations for the boundary curves
themnselves. Indeed, we are chiefly
interested in the wvelocity at the
surface of the airfeil, which velocity is tangential to
the surface, since the airfoil contour is a streamline of
flow. The mnumerical value of the velocity at the
surface of the airfoil is

Frcore 15—(n) Flow with
cirenlation smaller thamn for
Kutls condition; (b} flow
satislving Eutts condition;
() Aow with citculation
greatar thae for Kutta
eondition

o= Jm=la,—iwl=|g_;1=%l‘ ?1_2’ |E

We shall evaluate each of these factors in turn. From

equations (32 and (35)

dw .../ R _,.\_4xRV sin(a+t B)
dz ~ Ve"(l ¢ 2rz

At the boundary surface z=Be', and
512-0= — Vera(l —e2tlete ) —2{ Ve sin(a+ §)

T

:%U= — Ve "[(g"*e —g~teta"} + 24 sin{a + §)]
= —2¢ Ve *[sin{e+ ¢) +sin(a + G)]
and
|d |=2Vlsin(a+ ) +sin(e+ 5) (36)
In genersl, for arbitrary T we find that
I%“—:i-_-zv sin (et g) +5 0 (36"

To evaluate L(]%\ we start with relation (10)

we,
z_ﬂ

2=z
At the boundary surface

2’ =ze?v~ ¥~ where e=¢— ¢ and z=gerrt¥
de’ 2 d(g&—ie})
E’E(l T
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2—;(1 + AP (37"

e
dqa de dw

' /q6 dﬂ ‘Ao
4
\/<>

Tode
1+d_8

(37)

LEY
Then 1z

By equation (5)
-3
= z’+':—, and at the boundary z’=ae¥t, or

f=2a oosh{\b+£0)

dd.‘:' =2a sinh{y+ w)d("f’ +48)

=2 sinh{y +i8)e=#+1?),
! T
Then |§—§\ = 4e¢~% {ginh*y cos®® + cosh®y sing)

= 4¢2¥ (ginh¥¢ 4 sinf)

and l%' =¢=¥ Jsinhy + sin’d) (38)
Then finally
_ cl_'w =[], dz| |dz
T
V[sm(ae + o) +sin (a+ ﬁ)](l + ge)e o)

J inh*¢+ 311128)(1 -+ (ﬂ—’g) )

In this formmla the circulation is given by eqguation
(35). In genersl, for an arbitrary value of ' (see
equation ($6'}), the equation rctains its form and is
glven by

v 3111(a+¢)+4 RV](1+dB ¥y

{40}
-\/(smk”\b+91n’0)(l +( ) )
For the special case I'=0, we geb
: de
V sin(a+ )l 1+ 15 Je¥
(1+%) )

. \/ (sinh9¢+sinﬂa)(1 4-(%)2)

Equation (40) is a general result giving the velocity
ab any point of the surface of an arbitrary airfoil see-
tion, with arbifrary circulation for any angle of attack
e. Equation (39) represents the important special
case in which the circulation is specified by the Kutta
condition. The varicus symbols are functions only of
the coordinates {z, %) of the airfoil! boundary and ex-
pressions for them have already been given. In Tables
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I and IT are given numerical results for diffexent air-
foils, and explanation is thers made of the methods of
caleulation and use of the formulas developed.

We have immediately by equation (3) the value of
the pressure p at any peint of the surface in terms of
the pressute at infinity as

t--(3)

Some theorctical pressure distribution curves are given
at the end of this report and comparizon is there made
with experimental results, These comparisons, it will
be seen, within a large range of angles of attack, are
strikingly good.t®

GENERAL WING-SECTION CHARACTERISTICS

The remainder of this report will be devoted to a
discussion of the parameters of the airfoil shape sfiect-
ing aerodynamic properties with a view fo determining
airfoil shapes satisfying preassigned properties. This
diseussion will not only furnish an iluminating sequel

a

d
hon
n |r {1,0““
_—

Py

L5
dx

dy

r

By
FiooRE 16,

to the foregoing analysis leading to a number of new
results, but will also unify much of the existing theory
of the airfoil. In the next section we shall obtain
some expressions for the integrated characterigtics of
the airfoil. We stert with the expressions for iotal
lift and total moment, first developed by Blasius.

Blasius’ formulas.—Let ¢ in Figure 16 represent a
closed atreamline contour in an irrotational Auid field.
Blagius’ formulas give expressions for the total force
and moment experienced by ' in terms of the complex
" velocity potential. They ray be obtained in the fol-
lowing simple manner. We have for the total forces
in the r and y directions

P.=— [pds=— Spdy
Py= fpds= [pde
Po—iPy= = [p(dy +il)

" A paper devoted to more extensive applicatipns to present-dsy airfells is in

. progress.

The pressure at any point is

P=po— ¥
Then,

P.- éP,=%{v”(dy+ ida)

where the bar denotes conjugate complex quantities.
Since C is a streamline, v, dy—v,dr~0. Adding the
quantity

ip{ (v + 02y {0y —v,dx) =0

to the last equation, we get. ¥

P, ~iP,="2 £ (5, — in)}(da +idy)
2%

ip f dw
~24(3

The differential of the moment of the resultant
foree about the origin is,
dM,=p(x dz+y dy)
=R. P, of plz dz+y dy + ilyde —2dy)]
=R P.ofpzdz
where “RB. P. of” denotes the real part of the complex
quantity. We have from the previous results

(42)

. . o— dpldwn?
d(P,—q.P,)=~zpdz=g(d—z)dz

z
Then  dM,=—R. P. ofg(fi—"-;’)zdz
a
and M,=-R. P. org{ gi: zdz (43)

Let us now for completeness apply these formulas to
the airfoil 4 in the ; plane (fig. 14) to derive the Kutta-
Joukowsky classical formula for the lift force. By

equation (32) we have
dw Vete W BVt
—_— - —a—
dz - Py Z

and by equation {25}

G
dz 2% 2
Then
dw_dw dz
df ~dz " dt

- i1 27—t 1
Ve‘“—ﬂzi—(}? Ve a, Ve )z§+ . en

¥ Cf, Blasius, H: Zs. . Math, n, Phys. Bd. 54302 and Bd. 60 B. 43, 1410,
Slmmilarly,

Potipm—Er (" ks

& less convenient relation to use Ghan (42).
Mote that when the region about € 12 regnlar the value of tha integral (42} remsing
inehanged by integrating about any other eurve enclosing &
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Ay
( = A+ o
where

Ay= Voghis
. T

Al = @173“"_
T

Az = - 2R2V2+2@1V28Ef“— —
Then
— 3P, =Y _f‘(

N
= %p (ZriA)

= —1gl*pVT

Therefore
=pVTI'sin a:}
Pn=DVP COS8 o

gnd are the components of a force pVI which iz per-
pendicular to the direction of the stream at infinity.
Thus the resultant lift force experienced by the airfoil is

L=,VT (44)

and writing for the circulation T' the value given by
equation (35)
L=4xRpV"* sin (a+8) (45)
The moment of the resultant lift force about the
origin { =0 is obtained &3

M,=R. P. of——f d;‘ ;-dg-

=R. P. of——pf(dg_ :ai;
-R.P. of——f(A.,*‘—“+‘3+ L )x

(01+z+ + 2~1— . )( ——; .)dz

=R P of -—2m {coefficient of #71)

—R P Of 211’1. (A.2+A[C|)

or, M, is the imaginary part of mp{ds+dies).
putting ¥ ¢, = me® and o, — b2%* we get
My=27aV%sin 2{a+ ) + oVI m cos (e+5) (46)

The results given by equations (44) and (46) have
physical significance and are invariant to a transforima-

After

ar
1t way be recalled that =25 T #peete ana ama Do (oo, (29))
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tion of origin as may be readily verified by employing
equations (26) and (32'} and integrating around the &
circle in the z plane. It is indeed & remarkable fact
that the total integrated characteristics, lift and loca-
tion. of lift, of the airfoil depend on so few parameters
of the transformation as to be almost independent of
the shape of the contour. The parameters &, 8, o,
and ¢, involved in these relations will be discussed in &
later paragraph.

We shall obtain an interesting result * by taking
moments shout the poimt {=¢ instead of the origin.
(M in fig. 17) By equation (25) we have,

@y | T
j’—c1=z+-;+?-r. .

and by equation {43}
MM R P 0[ 2 f[_d(g' 0) ( _I‘Jl:ldf

_ P 4, A
=R. P of~§f(m+?‘+zg+ .. .)x

(z+ +8+ )(1—~—+ )dz
=R, P.of —irpd,
or
My =2xbpV? sin 2(a+ ) 4
= Yo L' o Axes
L
. Pecy ;i:::
ofﬁow

Fievre L7.—Momant arm from AL onto the lift vector

This result could have been obtained directly from
equation (46) by noticing that VT in the second term
js the resultant lift force L and that Lm cos (e+8)
represents a moment which vanishes at 3 for oll values
of . (In fig. 17 the complex coorvdinate of M is
¢=me®, the arm OH is m cos (x+3).) The perpendic-
ular Ay from M onte the resultant lift vector is simply
Obt&iﬂ&d from MM =Lhm,
as
¥ sin 2(a+7v)

hu=51r dn (@t f)

(48)
The intersection of the resultant lift vector with the
chord ot axis of the airfoil locates a point which may
be considered the center of pressure, The amount of
travel of the center of pressure with change in angle
of attack is an important characteristic of airfoils,
sspecially for considerations of stability, and will be
discussed in a later paragraph.

A First obtsined by R. von Mizes. (Reference ) The worl of vom Miss forms
an elegant gsometrical study of the airlell.
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The lift force has been found to be proportional to
gin (a4 B) or writing a+ =g

L=47pRV*?sin o {49)

where o, may be termed the absolute angle of attack.
Similarly writing e y=og

My =2x82pV25in Sy (59)

With von Mises (reference 6, Pt. II) we shall denote
the axes determined by passing lines through M at
angles 8 and v to the  axis as the irst and second axes
of the airfoil, respectively. (Fig. 18.) The directions
of these axes alone are important and these are fixed
with respect to a given airfoil. Then the lift L is
proportional $o the sine of the angle of attack with
respect to the first axis and the moment about M to

If this moment is to be independent of &, the coeffi-
cients of sin 2a and eos 2o must vanish.

Then
b eos By=Rrcog (B4 o)
and
bt sin 2y =Rrsin(f+o}
Hence,

bt _
r:R&nd g=2y—8

Then if we move the reference point of the moment to
2
a point F whose radius vecior from Af is %c‘“*‘*”, the

moment existing at & is for all angles of attack con-
stant, and given by

E

Fratng 18.—IN0

trating the g
the sine of twice the angle of attack with respect to
the second axig.

From equation (47) we note that the moment at any
point @ whose radius vector from M is re®, is given by

Ma=2xpbVidin 2{a+ v)— Lr cos (a+ o)

Let us determine whather there exist particular
values of  and & for which M, is independent of the
angle of attack « Writing for L its value given hy
equation (£5),

" Mo=27a"Vsin 2(a + v)—4wpRr V2 sin(a+ @) cos (a+ o)
And separating this trigonometrically
Ma=2xpV(b? cos 2y— Br cos (§+ o)) 8in 2«
+ (4* sin 2y~ Rr sin {§+0)) cos 2ux
—RBrsin (B—a)]

Mr=2xp8" V2 zin 2(v— @ (51)
I
‘?- L4 Direction
————— I X of x
axis
thru M
x
Orecimrmas
Ffow

isal propertics of sn airfeil (axes snd lift parabela of the B. A, F. 1% airioil)

It has thus been shown that with every airfoil pro-
file there is associated a point F for which the moment
is independent of the angle of attack. A change in
lift force resulting fromn s change in angle of attack
distaihutes itself so that its moment about F is zero.

From equation (47) it may be noted that at zero lift
(i. e., «= — §} the airioil is subject 10 & moment couple
which is, in fact, equal to Mp. This moment is often
termed ““diving moment” or “moment for zero lift.”
If Ay is zero, the vesultant lift force must pass through
F for all angles of attack and we thus have the state-
ment that the airfoil has a constant center of pressure,
if and only if, the moment for zera lift is zero.

The point F, denoted by von Mises as the foeus of
the airfoil, will be seen to have other interesting prop-
erties. We note here that itg construction iz very
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Z
gimple. Itlies ot adiztance % from M on a line making

angle 2y — § with respect to the & axis. From Figure
18 we sce that the angle between this line and the first
axis is bisected by the second axis.

The arm Ae from F' ontoe the resultant lift vector L
(ks is designated FT in Figure 18; note also that FT,
being perpendicular to L, must be parallel to the divec-
tion of flow; the line TV iz drawn parallel to the first
axis and therefore angle VIF=«a+ §) is obtained as

4 Me_ =8 sin 2(5— 1)
L 2R an(x+ B)

k4

k=§bg sin 2(8—«)
A

o= — T B (52)
But Az is parallel to the direction of o, and the relation
h=—hz sin (a+ @) states then that the projection of
Ap onto the line through F perpendicular to the first
axis is equal to the constant & (A is designated FV in
the figure) for all angles of atisck. In other words,
the pedal points T determined by the intersection of
Az and L for all positions of the lift vector L lie on &
straight Iine. (The line is determined by T and V in
fig. 18.) The parabola iz the only curve having the
property that pedal points of the perpendiculars
dropped from its focus onto any tangent lie on a
straight line, that line being the tangent at the vertex.

o setting

This may be shown analytically by noting that the’

equation of L for a coordinate system having F as
origin and FV as negative z axis is
- b

sin{ec+ )
By differentiating with respect to «,=a~+ 8 and elim-
inating «; we get the equation of the curve which the
!inos L envelop as ¥ =4h{x+h). From triangle FVS
m Figure 18, it may be seen that the distance

&
MF =% is bisected at S by the line T'V; for, since

z8in o+ ¥ cos = hp=

2
FV b= 2‘2‘{ sin 2(v— 8) and angle FSV=2{8—+), then
62 .
8F= R
vectors envelop, in general, & parabola whose focus is
at F and whose directrix is ¢he first axis. The second
axis and its perpendicular at M, it may be noted, sre
also tangents to the parabola being, by definition, the

It has thus been shown that the resultant life

resultant lift vectors for = —v and a=§-1, respec-

tively.

H the constant A reduces to zerc, the lift vectors
reduce to & pencil of lines through F. Thus a constant
center of pressure is given by A=0 or sin 2{g—v)=0
which is equivalent to stating that the first and second
sxes coincide. The lift parsbola opens downward
when the first axis is above the second axis (3>4); it
reduces to s pencil of lines when the two axes are
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coincident (=+%) and opens upward when the second
axis is above the {irst (8<v).

W. Miller ® introduced a third sxis which has some
interesting properties. Defining the complex coordi-
nate §, as the centroid of the cireulation by

day
F?°={f((ﬁ dy
and using equations (25) and (32) one ohtains
to—er="2%+ 4
where
N S
Fain (at A)
=——l——[R —gcos( +24))
W= 5 gn (at g) o OS«T oS laT ey

Z
(B sin at o

Xy R

sin (a+27v)]
63

The equation of the lift vector lines referred to the
origin at M and » axis drawn through M is
5 sin (o + 7}

Wi (e T F) (54)

T e0s q—y sin =
and. it may be seen that the point (z, 1) satisfies this
equation. The centroid of the circulation then lies on
the lift vectors. By elimination of « from equation
{53) one finds as the Iocus of {2, %)

2[R cos ﬁ*sz-cos {8— 24} + 2y [B sin 8 .
Ly r [ )
+gsin (8-2y)|=RB-

which i the equation of a line, the third axis, and
proves to he s tangent to the lift parabola. Geomet-
rically, it is the perpendicular bisector of the line FF"
joining the focus to the point of intersection of the
first, axis with the circle. (Fig. 18.)

The conformal centroid of the contour.—It has
already been seen that the point M has special inter-
esting properties. The transformation from the air-
foil to the circle having M as center was expressed in
the normal form and permitted of a very small e(e)
curve. (See p. 188.) T¢ was also shown that the
moment with respect to M is sinply proportionsl to
the sine of twice the angle of attack with respect to
the second axis. We may note, too, that in the pres-
entation of this report the coordinate of M, {=¢

27
=§ S ¢e%de, is o function oniy of the first harmonic
0

of the ¢{p) curve.

We shall now obtain a significant property of Af
invariant with respect to the transformation from air-
foil to circle. We start with the evaluation of the
integral

-{i"%ﬂds

# Rofevence T, p, 189, Also 2s. fiir Ang. Moth. w.Mech. B3. 3 8. 117, 1823,

Alrlofls haviog the same fiest, second, and third exes are alike theoretically in
total Nift properiles and alse in travel of the centsr of Pressure, b €., they bhave the
sane lift parabola.
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where A4 is the airfoil contour, ds the differential of

fication factor of the transformation =7(z) mapping
airfoil into circle; 1. e, each element ds of A when

magnified by\ S the differentisl of are in the
plane of the clrcle, i e, |dz|.

dz| . _
'{rd_i'dg

Then we have,

(z) |dz[ and by equation (25),

~ f(are+Des .)|dz|

2a

= c1+Re’°+?i,‘ —fv+R et .)Rdv

=2r R &
_ dz|
=c,{ds—q{|d-}‘ds

Then &
'Y d—f_‘ds
4SS
I | agl%

The point M of the airfoil is thus the conformal cen-
- troid obtained by giving each element of the contour
a weight equal to the magnification of that element,
which results when the airfoil is transformed into a
gircle, the region at infinity being unaltered. It lies
within any convex region enclosing the airfoil contour.®

ARBITRARY AIRFOILS AND THEIR RELATION TO
SPECIAL TYPES

The total lift and moment experienced by the air-
foil have been seen to depend on but a few parameters
of the eirfoil shape. The resultant lift force is com-
pletely determined for & particular angle of attack by
only the radius B and the angle of zere lift 8. The
momment about the origin depends, in addition, on the
complex constants ¢ and @ or, what is the sgme, on
the position of the conformal centroid M and the focus

(56)

F: The constants ¢ and g, were also shown (see foot-,

note 20) to depend only on the first and second har-
momnics of the e{¢) eurve. Before studying these
parameters for the case of the arbitrary airfoil, it will
he instructive to begin with speeisl airfoils snd treat
these from the point of view of the “*conformal angular
distortion” [e{¢)] curve.

Flow about the straight line or flat plate,—As a
first approximation to the theory of actual airfoils,
there is the one which considers the airfoil section to
be a straight line. It has beern seen that the linc of
length 4a is obtained by transforming a eircle of radius

2
@, center at the origin, by r=z+g- The region ex-

#'CL P. Fruok and K. Lowner, Moth, Zs. Bd. 3, 5. 78, 1618, _Alsp reforence 5,
p. 140,

ternal to the line 4a in the ¢ plane maps uniquely into
the region external to the eirele [z]=4. A point @ of
the line corresponding to a point P at ce® is obtained
by simply adding the vectors a(¢”+ ¢ *) or completing
the parallelogram OPQP’.

For ¢ =0, we have from equation (6)
#=2a cosh ¥ cos #=2¢ cos §
y=2a sinh ¢ sin 4=0
Then the paramneters for this case are B=g, §=0,
a=a* (i e, b=a, y=0), and M is at the origin 0.
Taking the Kutta assumption for determining the
circulation we have,
the circulation, T=4maV gin «
the lift, L=4rapV?sin a

moment about M, My =27¢% 1" sin 2a (57)

. . b
position of Fis at 2 =c,+R ¢ =g

Since 3=+, we know that the travel of the center of
pressure vanishes and that the center of pressure is at

o

pfea 2y

FizurE 19.
For at one-fourth the length of the line from the laad-
ing edge. The complex ﬂow potential for this case is

o) = = V[a2(ete + — @ -‘a]+ log 2(8)  (58)

where z({)= §' .J (i’) —u? is the inverse of squation

(5). Since :p(qo)=e(‘p) 0 for this case, equation (39}
giving the velocity af the surface reduces to

. @w
stn(--l—oe)
vl A2/
¥
2

and by equation (41) p=V Mﬂ) for I'=0.
B0 ¢

p= for T=47aV sin o,

sin

Flow about the elliptic cylinder—If equation (5)
is epplied te & circle with center at the origin and
Tadius ae*, the ellipse (fig. 19)

22
(2e coshy)

TR
7 (24 sinhy)?

is obtained in the { plane and the Tegion external to
this ellipse is mapped uniquely into the region external
to the circle. The same transformation alse trams-
forms this external region into the region internal to
the inverse circle, radius we=¥, We note that a point
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Q of the ellipse corresponding to P at aett is
obtained by simply completing the parellelogram
OFQFP’ (fig. 19) where I’ now terminates on the circle
ge~¢., The parameters are obtained as B=ae¥, §=0,
ay =az M is at the origin 0. Then, assuming the rear
stagnation point at the end of the major axis,

T=4zae’V sin
L=dxpaetVigin o
My =27a?p¥V? sin 2a

Since 8=, the point Fis the center of pressure for sll
ongles of abtack and is located at zz=ae~¥ from O or a
distance ae¥ from the leading edge. The quantity

EF ae?

EF =msh P+ sinh 1
EH Z2a(et+¢¥)

dcosh ¢ 4

(1-+tenh )

represents the ratio of the distance of F from the
leading edge to the major diameter of the ellipse.

The complex flow potential is identical with that
given by equation (58) for the flat plate, sxcept that
the quantity o in the numerator of the second term is
replaced by the constant #’¢*Y. Since ¢(p) = constant,
€(¢) =0 and equation (39) giving the velocity at each
point of the surface for a stagnation point at end of
major axis becomes

i il kS
= 1;‘,[E;m (¢+ a) +9in ale

Yeinh ¢ sy (59)
and for zero circulation by equation (41}
=V sin(e + ajet (39

sinh Ty +einty
Circular are seetions.—It has been shown that

2
the transformation §'=z+a’; applied to a cirele with

center at =0 and radius ¢ gives a straight line in the
¢ plane, and when applied to a circle with center 2=0
and radivs different from o gives an ellipse in the ¢
plaue. We now show that if it is used to transform a
cirele with center at z—4s (¢ being a real number) and
radius /&’ &%, & circular are results. The coordinates
of the transform of the circle ('in the ¢ plane are given
by equation (6) as

z=2a cosh ¥ cos ¢

y="2a sinh ¢ sin &
A relation between ¢ and 8 can be readily obtsined.
Inright triengle OALD (fig. 20), GM =¢, angle OMD =5,
and recalling that the product of segments of any

chord through OQ isequsl to @', OD =¥ (OP—0P)=

fg¥— o—¥
a-&Te)=asinh\b. Then $ gin #=g sinh ¢, and from

the equation for y, y=2ssin’. Eliminating both # and
¥ in equation (68} we get

(5 -(5)
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the equation of a circle; but since y can have only
positive values, we are limited to & circular are. In
fact, as the point P in Figure 20 moves from A’ to 4
on the circle, the point @ traverses the arc 4;" 4, and
as P completes the cireuit 44" the arc is traversed in
the opposite direction. As in the previeus cases, we
pote that the point @ corresponding to either P or to
the inverse and reflected point P’ is obtained by com-
pleting the parallelogram OPQP/. We may also note

Y *.Lﬂ Curve ae¥+'®

A

F1auRE 20.—Tha elrealar are afrfofl

that had the arc .44, been preassigned with the
requirement of transforming it into the circle, the most
convenient choice of origin of coordinates would be
the midpoint of the line, length 4¢, joining the end
points. The curve B then resulting from using trans-
formation (3) would be a circle in the 2* plene, center
at ' =1ie, and the theory developed in the report could
be directly applied to this continnouns closed B curve.

. ; 4 A"
! A4 ;
_A/ /a T a o a4’ ;oa x Axis
A A |I\ B' PI’ :1‘
\\“ -."1
e -

Frauee 21.—Discontinuous B enrve

Had snother axis and origin been chosen, e. g, as in
Figure 21, the B curve resulting would have finite
discontinuities at 4 and A’, although the arc A,.4," is
still obtained by completing the parallelogram QPQP’.

The parameters of the arc 4.4, of chord length 44,
and maximum height 2¢ are then, B=-faf+¢,

A= tsm'lfE + The focus F may be constructed by
erecting a perpendicular to the chord at A’ of length ¢
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and projecting its extremity on MaA’. The center M
of the arc also lies on this line.

The mfinite sheet having the cireular are as cross
section containg as a special case the flat plate, and
thus pexrmits of & beiter approximation to the mean
camber line of actual airfoils.  The complex flow poten-
tial and the formulas for the wvelocity at the surface
for the circular arc are of the same form as those
given in the next section for the Joukowsky airfoil,
where also a simple geometric interpretation of the
parameters ¢ gnd § are given.

Joukowsky airfoils—If equation (5) is applied o
a circle with center at z=s, ¢ being a real number, and
with radius E=c+#, a symmetrical Joukowsky air-
foil {or strut form) is obtained, The general Joulow-
sky airfoil is obtained when the transformation

F]
§'=z+a—é is applied to & circle € passing through the

point 2= —«¢ and containing =« (near the circum-
ference usually), and whose center M is not limited to
either the £ or ¥ axes, but may be on a line OM inclined
to the axes. (Fig. 32.) The parametric equations of
the shape are as before

r=2a cosh  cos @ 5

y==2a sinh ¢ =in ¢ ®
Geometrically e peint @ of the airfeil is obtained by
adding the vectors ae¥** and ae¥=* or by completing
the parallelogram GPQP’ ag before, but now P* lies on
another circle B’ defined as z=ae ¥ %, the inverse
and reflected circle of B with respect to the circle of
radius & at the origin (obtained by the transformation
of reciprocal radii and subsequent reflection in the z
axis), Thus OP-OF'=g® for all positions of P, and
OGP’ 15 readily constructed. The center A, of the
circle B may be located on the line AM by drawing
OM, symmetrically to OAM with respect to the y axis.
Let the coordinate of M be z=is+de®, where d, s,
and B are real quantities, The circle of radius e, with
center A, at z=1s, is transformed into a cireufar are
through 4.4," which may be considered the mean
cambet line of the airfoil. At the tatl the Joukowsky
airfoil has & cusp and the upper and lower surfaces
inelude s zero angle. The lift parameters are

B=ya*+s*+d, g=tan™ i. @ =a*=4e"" or b~a and

y=0. Since v=0, the serond axis has the direction of
the & axis. The focus F is determined by laying off

the segment MF—— on the line MA’,

it may be noted, is obtained essily by the following
construction. In triangle MDC”, MD =R, M¢C' and
MO sre made equal to ¢, then COF drawn parallel to

DG determines Mﬁ=g- The lift parabola may be

now determined uniquely since its direcirix AM and
focus F are known,

This quantity,

It may be ehserved that if it is desired to transform

| & preassigned Joukowsky profile ints a cirele, there

exists a choice of axis and origin for the airfoil such
that the inverse of transformation (5) will map the
airfoil directly into a circle. This axis is very approx-
imately given by desighating the tail as {—2a, 0} and
the point midway between the leading edge and the
center of curvature of the leading edge as (+ 2z, 0) the
origin then bisecting the line joining these points.

-3
e
L

Fisyre 72.—The Jeukowsky eirfoil

The complex potential flow functiom for the Jou-
kowsky airfoil is

wit)= — v[g(g)e*%
where

]4»3{' log g({) (613

g()

o) =—§¢\/ EY-e-

By equation (39) we have for the velocity at the
surface

Vsin(a+ o) +sina+ 3)1(1 +38) o

\/ (sinh -+ sin’ﬁ)( 1 +—(g—f)3)

This formula was obtained by transforming the flow
around ¢'into that around B and then into that around
A. Since we know that B is itself a circle for this
case, we can simply use the latter two transformations
alone.

We zet

Visin (a4 ¢) +5in [a+ )] e

P — =
+sinh 2y 4 sindp

(62)

That these formulas are equivalent is immediately
evident since the guantity

gh— ¥ (1+

@

is unity being the ratio of the magnification of each
are element of ' to that of B, (See eq. (37).)
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A very simple geontetrical picture of the paremeters

¢ and ¢, exists for the cases discussed. Im Figure
23 the value of ¢ or p—@ at the point P is simply

FIGURE 23.—Geomeirlcs] representation of « and ¢
for Jonkowsky airfolls

angle OPM, i. e, the angle subtended at P by the
origin O and the centex M. The angle of zero lift is
the value of ¢ for 6=m; i. e, erau=8=0TM. In
particular, we may note that e=0 at & and 5, which
aTe on the straight line OM. Consider the triangle
OMP, where OP=ae¢, MP=RE=qae", %=p, angle
OPM=¢; also, MOX=5 MOP=0-8 OMP=x-
{¢—3). Then by the law of cosines, we have
e =1+2p cos(e—3) + 9
or

- :po:% log {1+ 2p cos(y— 58} + %) {63)

i {11 CO8 R — )
21( 1" — ot

and by ihe law of sines

N p5in(p—3)
S €= 20 cos(e— 03 + 2
or
= - P Sil‘l(qo—ﬁ)
elg)=tan 14 p cos{p—0)
- S (-8 nle—d) .
? (-1} > ¢ (64)

We see that, as required, the expressions for the “radial
distortion’ ¢(g) ond the “angular distortion” ep)
are conjugate Fourier serics and may be axpressed as
a single complex quantity

@ 1yr-1
(f = do) —ie= E( 13 Pt
I

=log [1+ pe™*w~|
It is evident also that the coeflicient for n =1 or the
“first harmonic term™ is simply pe® and a translation

by this quantity brings the circle C into coincidence
with B as was pointed out on page 187.
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2y
The constant "‘5°=2L1r [‘)f yde is readily shown to be

invariant to the choice of origin (), as long as O is

within B. We have

—1-:.2;"441 ==—1-?}'rllo {1+2p coz (p—38}+ p¥)ed¥d
270 # 270 9 g ° P [ oile

(4«,+%’ (-1 nled pﬂ) do=vo

FiswsE 24 —The Jenkowsky airfeil p=0.10, §=45%
Figure 24 shows the Joukowsky airfeil defined by
p=0.10 and 5=45° and Figure 25 shows the ¥(8),
(), 28}, and () curves for this airfoil.

o I | |
) HEEN £(p) |
A B dﬁ‘(-#“’ _"‘hq_:.:‘!a |
7 £ | ™~ |
1 | Sl
! -
| L
oy
: ! | |
fg P ot B | | !
0 e | &
'05 §/ 63| v ip)) P
. sl | "
o 1
-5k - i
-id
1 35 =g ]
¢ z 7

FIGUGE 25.—The a(8) and $(9) curves for the afrfoll in Figure 24

Arbitrary sections.—In order to obtain the lift
parameters of an arbitrary sirfoll, a convenient choice
of coordinate a.es is first made as indicated for the
Jonkowsky nirfoil and as stated previously. (Page 181)
The curve resulting from the use of transformation (5}
will yield an sarbitrary curve aef*? which will, in
general, differ very liftle from a circle. The inverse
and reflected curve ge¥v—# will also be almost eircular.
The transition from the curve ge¥t to a circle is
reached by obtaining the solution (¢} of equation
{13). The method of obtaining this solution ag
already given converges with extreme rapidity for
nearly circular curves,
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The geometrical picture is analogous to that given
for the special cases. In Figure 26 it may be seen that
a point @ on the airfoil (N. & C. A. -M8) corre-

F1GURE S&—Th:; E\T A Q. A — M6 sirfoil
sponding to P on the B curve (or P’ on the B’ curve)
iz obtained by constrocting parallelogram OPQP’.
The ¢{#) and =(#) curves are shown in Figure 27 for
this airfoill The complex velocity potential and the
expression for velocity at the surface are given respec-

The method used for arbitrary airfoils is readily
applied to arbitrary thin ares or to broken lines such
ag the sections of tail surfaces form approximately. In
Figure 26 the part of the airfoil boundary above the
axis transforms by equation {§) inte the two discon-
tinuous ares shown by full lines, while the lower
boundary transforms into the arcs shown by dashed
lines. If the upper boundary surface is alone given
(thin eirfoil} we may obtain a closed curve ¢ed+?® only
by joining the end pomts by a chord of length 4e and
choosing the origin at its midpoint® The resulting
curve has two double points for which the first derive-
tive s not uniquely defined and, in general, it may be
seen that infinite velocities correspond to such points.

At a paint of the ¥{8) curve corresponding to a
mathematically sharp corner, there exist two tangents,

that is, the slope % is finitely discontinucus. The

S .
Pl
- // \\x
[ = H
L £(8] Curve-
0 ] e S
i e
]
S T
R —
= .!' '
.‘é‘_,_‘___ — ]
— [ l/
v I /
e e
J [~
a B / e & a5 7 om, 25 o 4.5 & g5 & &
Noge Taif Lower surfoce Noge

tpoer surface
g

Frovee 27.~The 5(8) and §(d) curves for the N. A. C. A. =M airfoil

tively by equations (33) and (32). The lift param-

aters are
. R
B=gety, f=¢pu (abd=n),Misatz=¢,= - S tleke’de
0

and Fisat z—=¢ 4 % where a, is given in equation (25°).
The first and second axes for the N. A. C. A, -M6
airfoil are found te ceincide and this airfoil has then a
constant center of pressure at F. Figures 28 (a) to
28 (I} give the pressure distribution (along the » axig)
for & series of angles of attaclk as caleulated by this
theory and as obtained by experiment.® Table I
contains the essential numerical data for this airfoil.

“ T'he experimental results ave takea rom test Ne. 23 of ¢he N, A, . A. varisble-
danzity wind tunoel. The angle of attack @ substituied (o equation (5% has bean
modlfied arbilrarily 10 take aseouut of the efiects of finita span, tunnel-wall inter-
lerstice, and vigeosity, by choosing it 26 thal the theoretical lift Is abalik 10 per tent
more than the correspondiog experimental value, Tha setunl values of the Lift
coslicients are iven in the gl rea,

A0708— 3¢ ——14

l

curve &(# must have an infinite slope at such a point
for according to s theorem in the theory of Fourier
series, at & point of discontinuity of a F. 3., the con-
jugate F. 3. is properly divergent. This manifests
itself in the velocity-formula equation (39) in the fac-

tor (l—f—g—;) which is infinite at these sharp corners.

For practical purposes, however, a rounding of the
sharp edge, however small, considerably alters the slope

c% st this point.

Heal angle of attaok.—A thin airfoil, represented

"by a line are, has hoth a sharp leading edge and a

sharp trailing edge. The Kutta assumption for fixing
the circulation places a stagnation point at the tail for
all angles of attack. At the leading edge, however,

4 Nots that §{0+=) = —F(6) for thiz case.
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Theoretical Experinerial
0 linper sw-face x Lower surfoce
_ {Averoge AN = Fx 109
42 B
-8 [1\
g (o N\
- — —
g 0 - ‘\__\ 100 N e ———
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4 s
= o == /N5 ar=-2°
G E-0072 £ = =008
L2
b
—¢ L]
D o D O fiey
T 50
Per cent chard
o
& o =~ 3" 36" ar=—i°
G=~a | 06=0
._‘3 -
-4 “ fm
4: Fer cent chord
8 o« =g 5" e
=010 ¢ =2080
“""*—-—..\_ = - W
G _—
Fer cent chord
E -
a o =052 B L
=047 | =018

1]
Per cent chord

g o= !'3-5
C;, =0264
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N a‘,=2‘
L & =024

FigurEa M & to e—Theoretical and experimentsl pressure distribution for 1ke M6 airfofl at varlous angles of attack
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Theareticol

53
Parcent chard
N
B o 22y
£ =035

~42
-8
e (g}
P 07
g o

Fer cenf chord
@ =3°
G = 0435

(=)
Percenf chord

Q =422
£ =060

Theorefical Cxperinental
o Lheer surfoce
x Lower surfore

_ {Averoge RN =53 108

Experanentol
o Yoper surface x Lower surfoce
{Averoge AN =3 x /0%

oy=3°
G =032

wr=4°
G = 0.395

= &%
5‘. =Q545

Theorefical

Experimentol
o Upper surfoce
% Lower surfoce
_ {Average RN =5x/0%

Per cent chard

‘/"_..--‘-"""‘ "“__.-n
o =624 / -g¢ /G’r'!.?“
Lo G =065 i G =a770 / G =0.940

F1aURES 24 { 16 h.—Thesratics! and xperimantal Dressure distebation br the ME airfoil at vaziots angles of altask
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the velocity is infinite at all angles of attack except
one, namely, that angle for which the other stagmation
point is at the leading edge. It i3 matural to expect
that for this angle of attack in actual cases the fric-
tional losses are at or near a minimum and thus arises
the concept of “ideal” angle of attack introducad by
Theodorsen (reference 8) and which has also been
designated “‘angle of best streamlining.”’ The defini-
tion for the ideal angle may be extended to thick
airfoils, as that angle for which a stagnation point
ocours directly at the foremost point of the mean
camber line.

The lift at the leading edge vanishes and the change
from velocity to pressure along the airfoil surface is
usually more gradusl than at any other angle of attacl:.

Theorefoal

Experinental
Q Uober surfoce
x Lower surfoce
_ fAveroge RN =3 x /19

o= 15
G = LOE

FIGURE3 1B k Lo L—Theoretical and experimental pressure disicibutien for the MU alrmil ab varlous abgles of attaek

|

The minimum profile drag of airfoils actually oceurs
very close to this angle. At the ideal angle, which we
denote by e« the fsctor [sin (a4 ¢)+sin («+#)] in
equation (39) i3 zero not only for 6=+ ore=¢pr= 5 but

also for#=0 or e=er. We get
o+ ev—= — (o +ep} ot
ar= — (_‘”T-J_'EL} (55)

CREATION OF FAMILIES OF WING SECTIONS

The process of tranaforming = circle info an airfoil is
inherently less difficult than the inverse process of
transforming an airfoll nto a circle. By a direct appli-
cation of previous results we can derive a powerful and
flexible method for the creation of general families of
airfoils. Instead of assuming that the (8 curve is
preassigned (that is, instead of a given airfoil), we
assume an arbitrary ¢{g) or e(¢) curve® as given.
This is equivalont to sssuming as known & boundary-
value funetion along a circle and, by the proper choice

# Ruhject to some peneral resteictions given in the nest paragcaph.

i
’
w.

|

of this function, one can determine airfoil shapes of
definite properties. The ¢{p) function, which we have
designated conformal angular distortion funection, will
be seen to determine not only the shape but also to
give easily gll the theoretical aerodynamic character-
isties of the airfoil.

An arbifrary «(¢) curve i3 chosen, single valued, of
de

dy
These lmiting values of g% are far beyond values

period 2=, of zero ares, and such that — = = =1,

vielding sirfoil shapes® = The () function, except for
the constant s, is given by the conjugate of the
Fourier expansion of «(¢) or, what is the same, by

avaluating equation (14) as a definite integral. The
Theorefhcal Expmrimenial
o Upper surfoce
® fower surfoce
_ fAveroge AN = 3x /09

a = /3°
& =226

& =2f"

£4

constent ¥, is an important arbitrary ® parameter
which permits of changes in the shape and for a certain
range of values may determine the sharpness of the
trailing edge.

We first obtain the variable § as 8 (¢)=¢—¢ (¢}, 50
that the quantity ¢ considered as a function of 8 is
¢ @ =¢{e{®)]. The coordinates of the airfei] surface

are then
r=2g cosh ¢ cos @
. . {8)
y=2q¢ sinh ¢ sin 8.

. d
% For eotuwuon alrfoils, with a proper cholee of origin, 1ﬁ’| < <030,

% For comnmon airfoils £g is nsualty between 0005 and 0,15 The sanstant da is
not, howgver, compietaly erhitrary., W have ssan that the condition given by
aenatlon (22 is sufficient te yield & contour fees from double points In the 2 plane.,
W may alsc statg the eriterion that the Inverse of equation (3 applied lo this
contour shall Yizld a contour in the © plane free from double peinls. Co:lsid_er the
function ¢ for ¢ varying lrom 0 to = 0y, The oegatlve of esch value of ¢(8) in
this range Is considerad associated with —t. i ¢, w5822,  Dasignate the (unctlon
thus formed from 8=0 to 2¢ by $8*. Then F8)* represents a Hne are fn the ¢
plina, i. 8., the npper stitface of 4 contour. [3es footnote 25.] Then fer the entiry
contour to be free from double polnts it is hezessary that the lower snrface sheuld not
eross the upper, that iz, the erigheat ${® eurve lor § varylng from v bo 2o must act
erpss below FE017
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The veloecity at the surface is
=T [sin (o+ ) +sin (a+,8) et

\/(smh Y +sin’ 8} I:(l —— (3i):|

and 1s obtained by using equation { 3 Y instead of (37)
in deriving (39}. The angle of zero lift 8 is given by
(@) =8+ ford=x,1. e, ¢(m)=8w+5.

The following figures and examples will make the
process clear. We may first note that the most natural
method of specifying the « (¢} function is by a Fourier
series expsansion. In this sense then the elementary
types of ¢(p) functions are the individual terms of
this expansion.

(39")

=0/ 5 €)=0.05 Sinfp=<5"
;rw sing o100 Srip=457

20(h) to 20(4). In particular, the second harmonie
term may yield S shapes, and by & proper combina-
tion of first and second harmonic terms, i, e., by a

" proper choice of the constants .4;, Az, &, and & in the

ralation .

() = A, sin (p—&) + Ay sin 2¢—b)
it ig possible to fix the focus F of the lift parabola as
the center of pressure for all angles of attack.®® The
equation

ele)=0.1 gin {¢-60°)+0.05 cos 2
represenis such an airfoil and is shown in Figure 29{u}.

The gencrsl process will yield infinite varieties of

eontours by superposition of sine functions; in fact, if

€= 5im 3
%E}Of y

(o

ewl~0f sinfp-<57
%EGOS

€()=0./ sinfe~i5)
e _
()

g’p}-ar’ S Fp-do

=]} . : ;

=0/ sinfp-30Y €fw=0/ sinfp-457
fdf;p_)m inf =307 ;;_b'm? infp=437
(e) J

N

£fpillf = 567
w.f'fa; 30-90°

@"—'\\-.__

5(@'=0;’ sinfp-45% €ip/=015 sinfp-45%
o

()

A

= sinfp-G07

6o

clqo) O! Sinfp

A

=0/ sinfg=75%
fﬁzaf [,

)
) (e}

i

(=01 sinilp—457
va=0/

—— S

EfpImOLTE airmidy

o S

{r] : ;
-CO75 snfdp-45Y

Ylses T

{5}
———

<':3~

=075 sy dp=90%
Yp =007 ats

€@~ sinfly-807)
in) '

M —

B
f{woaa’ Sinp =60 -.05 sinEp-807

T {u]

— ;

FIGURE 20.—Airfoils croated by varving ey}

Consider first the effect of the first hatmonic term ' the processis thought of as & boundary-value problem

elp)=2dA, s (p—4), dp=e

In Figures 29(a) to 29(g) may be seen the shapes
resulting by displacing & successively by intervals of
15° and keeping the constants A, =0.10 and ¢, =0.10.
The first harmonie term is of chief influence in deter-
mining the airfoil shape. The case ¢(p)=0.1 sin
{p —45°) is piven detailed in Table TI, (This airfoil
is retnarkably similar to the commonly used Clark Y
airfoil.} The entive caleulations are eheracterized by
their simplicity and, as may be noted, are completely
free from the necessity of any graphical evaluations or
constructions.

The effeat of the second and higher harmonica as
well as the constant ¢, may be observed in Figures

of the circle, it is seen that it is sufficiently general to
vield every closed curve for which Riemann’s theorem
applies.

Laxcrey MEMORIAL ABRONAUTICAL LABORATORY,
Nartrowar Apvisory ComMMITTEE FOR ACRONAUTICS,
LavaLEYy F1ELp, Vi, November 4, 1938,

WThL: s acepmplished as follows: Weseek o determive the constants. Ay, 4 :, 1, And
1 50 thal 8=y, where + is abtained from aquation {22'} a5 gqm=bietive AR T'Hz and

we Wiay note that mﬁ =gty and E;E-F—A,e'*: These relatbons are transcenden-

tal; howeves, with buba few pmctice trials, solutions cam be gbtained at will. Addi-
tion of highar harmenies will yield further shapes baving the same conter of presstive
proportied [ 8 iz kapt oochanged.
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APPENDIX

I EVALUATION OF THE INTEGRAL.

(13)

2r —
()= =5, S W) ot S35 de

=9

'3"(‘69) sin 3

de {13")

log

1
=Ly
o

The function ¥(¢) is of pexiod 21 and is considered
known. (Note that the variables ¢ and ¢ are re-
placed by ¢ and #, ¢ and ¢, @ and &, ete., in
equation (21) and that the following formula is
applicable for all these cases.)

A 20-point method for evaluating equatmn (13) as
a definite integral gives

ey 235D g~y antte— v
+ UCIRIL IR ‘i‘an(%_'ﬁ-n):lv-w 14]

where

¢1= value of ¥(¢) at o=’ + 0

d=value of ¥(p) at p=¢ +10

(n=1,—-1,12, -2, .9, -0

and the constants ¢, are as follows: ao=ﬁ)-=0.3142;

= 1091 ; a:=0.494; a3 =0.3158; ¢,—0.217; a5s=10.158;

¢5=0.115; a;=0.0884; 0z =0.0611; and ;= 0.0251,
This formula sy be derived directly from the

definition of the definite integral. The 20 intervalg!

chosen are ¢ -"3% to qo+-2%' ¢+§) to qa-i-g—;- etc.
It is only necessary to note thet by expanding ¢{¢) in
a Taylor series around p=¢’ we get

3 f ® ¥e) cot L= - 2s[d*° *”:[

¢ -8

swhere the interval o' —s to ¢ +2 is small. And, in

feneral,

1] L
] f\P(w}COt@z"p de
3]

ja very nearly
i
2

P
il —2

“AT
— ¥ log

1 Beferenca 2, p. i1, givaa g 10-polnt method resilt.
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where the range ¢;— ¢, is small and ¢, s the average
value of () in this range. The constants ¢, for the
20 divisions chosen shove are actually

sinrz—n+1
40

T | R

ST

As an exemple of the caloylation of (6} we may refer
to Table I and Figures 26 and 27 for the N. A. C. A,
— M8 girfoil. From the $(§) curve (fig. 27) we obtain

a,=log +9

the 20 values of ¢ and %"g for 20 equal intervals of a.
For the airfoil (fig. 26) we get the following values:

(Upper d¥ {Lower dz
geuriace) dy @ surface) '3 dg
O fnoss) 0.102 0,000 BT oo —oo002
= .185  .027 %’ J0BT . 0B0
= L1902 . 080 L 071 . . 03D
o L1809 —. 030 Ll LOT7 oLl
&= 78— 004 L 079 . 000
= J148  —. 005 Ly 082 016
i A0 —1d L 000 . 039
= 077 —, 086 B L1 .081
& 052 —. 086 Lo 150 . 154
%g. 041 025 2w (nose) . 192 . 000
x (fail) .055 000

The value of ¢ at the tail (. ., the angle of zero lift)
is, for example, using formula I

e--——[lDXO

+1.091(,049—.041)
+ 404,057 — .052)
+.313(.071—.077)
+.217(.077 —.110)
+.158{.070 —.146)
+.115(.082—.174)
+.0884(.080 —.189)
+.0511(,111 —.192)
+.0251(.150 —.185)] = .0105
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The valus of ¢ for 0=‘;’—;: for example, s obtained by

& cyclic rearrangement. Thus,
e=—3] 75 (—.030)

+1.091(.174—.192)
+ 494(.146 —.185)
+.313(.110—.192}
+ .217(.077 — .150)
+.158(.052—.111)
+.115{.041 — .090)
+.0884(.055 — .082)
+.0511(.040 — .079)
+.0251(.057 —.077)] =.0347

The 20 values obtained in this way form the (8
curve, which for all practical purposes for the airfoil
considered, ia nctually identical with the final (8
curve.

II. NOTES ON THE TRANSFORMATION,

;=f(z)=ol+z+%‘+§+ . "

There exist a number of theorems giving general
limiting values for the coefficients of the transforma-
tion equation (4), which are interesting and to some
extent useful. If [=jf{z) transforms the external
region of the circle € of radius & in the z plane, mto
the externsl region of a contour A in the ¢ plane in a
one-to-one conformal manner and the origin =0 lies
awithin the contour A (and f'(e)=1} then the area ,§
inclosed by A is given by the Faber-Bicberbach
theorem as 2

| S=Rtz- 3l
- B

_ A=1
Since all members of the above zeries term are positive,
it is observed that the ares of ¢'is greater than that
inclosed by any contour A in the ¢ plane {or, at most,
equal to the area inclogsed by A 1f A is a cirele).

This theorem leads to the following resulis

|ﬁ'»1|§R2 (&)
ol 528 (h}

Lat us designate the circle of radins B about the

conformal centroid A as center as C) (L. e., the center

is at {=¢;; this eircle has heen called the “Gruhd-
kreis”” or “basic’” circle by von Mises). Then since

I%'l represents the distance of the focus F from A, the

relation (a) states that the focus is always within (%,
In fact, » further extension shows that if #; is the radius
of the largest circle that can be inclosed within 4, then

E
Fis removed from €} by at. least%-

t For dotails of this and follywing stotoments see referenca 5, p. 10¢4nd p, 147, aad
elso reference 6, Past IL

From relation (b) may be derived the statement that
if any circle within A is consentrically doubled in radius
it is contained entirely within a circle about M as
center of radius 2R. Also, if we designate by ¢ the
Eargest diameter of A (this is usually the “‘chord” of
the airfoil) then the following limits can be derived:

Ri%c
B= %c

These inequalities lead to interesting limits for the
lift coefficient, ‘Writing the lift coefficient as

O, L
LT %AV
where by equation (45) the lift force is given by

L=axReV? st (a+§)
we have

2w sinl (et .‘3‘)§0:,=§Z—Rsin (et g Edrsin{at g (ID

The flat plate i the only case whers the lower
limit is reached, while the upper Ymit iz atétained for
the cireular eylinder only, We may observe that a
curved thin plate has a lift coefficient which execeeds
2w sin {o+ 8} by & very small amount, In genersl, the
thickness has s much greater effect on the value of
the lift eoefficient than the camber. For common
girfoils the lift coefficient is but slightly greater than
the lower limit and is approximately 1.1X2x sin
{xt8).

Another theorem, similar to the Faher-Bieberbach
ares theorem, states that if the equation ¢ =#{z) trans-
forms the internal region of & circle in the 2 plane into
the internal region of & contour B in the ¢ plane in a
one-to-one conformal manner and f'(0)=1 (the origins
gre within the contours) then the area of the circle is
less than that comtained by any coniour B, This
theorem, extended by Bieherbach, has heen used m an
attempt o solve the arbitrary airfoil® The process
used is one in which the area theorem is & criterion as
to the direction in which the convergence proceeds.
Although theoretically sound, the process is, when
applied, extremely laboricus and very slowly con-
vergent, It can not be said te have yielded as yet
really satisfactory results.

1, LOCATION OF THE CENTER OF PRESSURE FOR AN
ARBITRARY AIRFOIL

It is of some interest fo know the exact location of
the center of pressure on the 2 axis as a function of the
angle of attack. In Figure 30, 0 is the origin, M the -
conformal centroid, L the line of action of the lift
force for angle of attack « Let us designate the

# Miiller, W, s, I snpaw. Math, u. Mech, Bd. 5 8. 307, 1025

Hihndor!, P, Iz L angew. Math. u. Mech. Bd. § 3. 265, 1926,
Algo yelferancs &, p. 150
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intersection of L with the x axis of the airfoil as the
center of pressure P.

In the right AONM we have,

0M=615m€ﬁ=A1+’£~B1
ON=m cosd=A,
MN=msn i=B1
MJ _ hyy
and in right AJHM, KM= ==
har
Then KN=m‘*Bl
and NP=KN tan a—hy sec o— B, ton o

By equation (48)

MM B sing oty

“oF din (a+ )

Then the distance from the origin fo the center of
pressure P is

OFP=0N+NP=A4,—

by =

Blt&,l'la

E_ sin 2 (et}
2R cos o sin (a+ 8

(111}

x Axis

FIGURE 30—Center of presstirs hoostion on the 7 axis
EXPLANATION OF THE TABLES

Tsble I gives the essential data for the transforma-
tion of the N. A. C. A. -M8 airfoil (shown in fig. 26}
into & circle, and vields readily the complete theoretical
aerodynamical characteristics. Columns (1) snd (2)
define the airfoil surface in per cent chord; (3) and {(4)
are the eoordinates after choosing & convenient origin
(p. 181); (5) and (6) are obtained from equsations (7)
and (8) of the Teport; (9} is the evaluation of equation

{(13) {see Appendix); (10) and (11) are the slopes, ob- : -
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tained graphically, of the ¢ against §, and e against
8 curves, respectively; (12) is given by

(1 +5
.\/ (sinh *¢+ sm’ﬂ)(l +( )

_f ¢ (¢) dy and may be obtained graphi-

where ¢, =

cally or numencally, column {13) gives ¢=8-+¢. The
veloeity v, for any angle of attack, is by eguation {39)
v=Vk [sin (a+ ¢)+sin (a+ 3)]

and the pressure is given by equation (3). The angle
of zero lift 8 ia the value of « at the tail: i e, the value
of efor d==.

Table LI gives numerical data for the inverse process
to that given in Table I; viz, the transformafion of a
cirele into sn airfoil. (See fig. 29.) The function

e(p)=0.1 sih (¢—45") and constent ¢,=0.10 are

chosen for this case. Then ¢(¢)=0.1 cos (p—45%)

+0.10. It may be observed that columms (11) and

(12) giving the coordinates of the airfoll surface sre

obtained from equations (8) of the report. Column
Lol

{13) is given by
\/ (sinh %y +sin%) [(1 ( )]

|-
and the velocity at the surface is b}" equation (39')
p=TVEk [sin («+¢)+ein (a+ 8)]
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GENERAL THEORY OF AERODYNAMIC INSTABILITY AND THE MECHANISM OF
FLUTTER

By Tazopore THEODOREEN

SUMMARY

The aerodynamic forces on an oseillating airfoil or
airfoil-gileron combination of three independent degrees
of freedom have been determined. The problem resolves
wself info the solution of certain definite vniegrals, which
have been identified as Bessel funetions of the jirst and
second kind and of zero and first order. The theery,
being based on potential Aow and the Kulia condition,
is fundomentally egquivelend fo the conventional wing-
seetion theory relating lo fhe steady case.

The air forees being known, the mechanism of aerody-
namie instability has been analyzed in detail.  An exqet
solution, involving potential flow and the adoption of the
Kutta condition, hos been arrived al.  The solution iz of

" @ stmple form and is cxpressed by meens of an aurilicry
parameter k. The muthematicol freatment also provides
@ conventend eyelic arrangement permiilting a uniform
treatment of afl subcases of two degrees of freedom. The
Fhtter velocity, defined us the atr velocity af which flutter
starts, and which 15 treated as the unknown quantity, is
determined as a funclion of a cerfoin ratio of the fre-
quencies in the separate degrees of freedom for any magni-
tudes and combinations of the airfotl-aileron poramelers.

For those inlerested solely or parficularly in the numeri-
eal solulions Appendu I has been prepared. The rou-
tine procedure in solving numerical examples is pul
down detached from the theoretival background of the
paper. It fird s necessary lo determine a cerlain number
of constanis pertaining to the case, then o perform a few
routine celevlations as indicated, The resull is readily
obtained in the form of a plot of futter velocily against
Frequeney for any values of the other parameters chosen.
The numerical work of culewluting the constanis is sim=-
plified by referring lo a number of tables, which are in-
cluded in Appendiz I, A number of {llustrative examples
and experimendal resulls are given in Appendir IT.

INTRODUCTION

It has been known that a wing or wing-aileron strue-
turally restrained to a certaln position of equilibrium
becomes unstable under certain condifions. At least
two degrees of freedom are required to create a con-
dition of instability, as it can be shown that vibrations

of s gingle degree of freadom would be damped out hy
the gir forees. The air forces, defined as the forces due
to the air pressure acting on the wing or wing-aileron
in an arbitrary oscillatory motion of several degrees of
freedom, are in this paper treated on the basis of the
theory of nonstetionary potential flow. A wing-
section theory and, by analogy, a wing theory shall be
thus developed that applies to the case of oscillatory

| motion, not only of the wing as a whole but.also to

that of an aileron. It is of considerable importance
that large oscillations may be neglected; in fact, only
infinitely small oscillations about the position of
equilibrivm need be considered. Large oscillations
are of no interest since the sole attempt is to specify
one or more conditions of instability. Indeed, no
particular type or shape of girfoil shall be of concern,
the treatment being restricted to primary effects. The
difforential equations for the several degrees of freedom
will be put down. Each of these equations contains
statement regarding the equilibrium of a system of
forces. The forces are of three kinds: (1) The inertia
forces, (2) the restraining forces, and (3) the air forces.

There is presumably no necessity of solving a genersl
case of damped or divergent motion, but only the
border case of a pure sinusoidal motion, applymg to the
case of unstable equilibrium. This restriction iz par-
ticularly important as the expressions for the air force
developed for gscillatory motion cen thus be employed.
Imagine a case that is unstable to a very slight degree;
the amplitudes will then increase very slowly and the
expreasions doeveloped for the air forces will be appli-
ceble. If is of interest simply to know under what
eircumstances this condition may obtain and cases in
which the amplitudes are decreasing or increasing at a
finite Tate need not be treated or specified. Although
it is possible to treat the latter cases, they are of no
concern in the present problem. Nor is the internal
or solid friction of the structure of primsry concern.
The forfunate situation exists that the effect of the
solid friction is favorable. Knowledge is desired con-
cerning the condition as existing in the absence of the
internal friction, as this case constitutes a sort of lower
limit, which it is not always desirable to exceed.
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Owing to the rather extensive field covered in the
paper it has been considered necessury to omit many
elementary proofs, it being left to the reader to venfy
certain specifie statements. In the first part of the
paper, the velocity potentials due to the flow around
the airfoil-sileron are developed. These potentials
are treated in two classes: The noncireulating flow
potentials, and those due to the surface of discon-
tinuity behind the wing, referred to as '‘circulatory”
potentials, The magnitude of the circulation for an
oscillating wing-aileron 13 determined next. The

(%%,

FIGURE 1. —Conformal representatlon of the wing profle by a circle.

forces and moments acting on the airfoil are then
obtained by integration. In the latter part of the
paper the differential equations of meotion are put
down and the particular and important case of un-
stable equilibrium is treated in detail. The solotion
of the problem of determining the flutter speed is
Mnally given in the form of an equation expressing a
relationship hetween the various parameters. The
threa subenses of two degrees of freedom are treated
in detail,

- The paper proposes to disclose the basic nature of
the mechanism of flutter, leaving modifications of the
primary results by secondary effects for Tuture investi-
gations.! Such secondary effects are: .The effects of a
finite span, of section shape, of deviations from poten-
tinl flow, including salso modifications of results to
include twisting and bending of actual wing sections
instead of pure torsion and deflection as considered in
this paper.

The supplementary experimental work included in
Appendix IT similarly refers to well-defined elementary
cases, the wing employed being of a large aspect ratio,
nondeformable, and given definite degrees of freedom
by a supporting mechanizsm, with external springs
maintaining the equilibrium positions of wing or wing-
sileron. The ecxperimental work was carried on
largely to verify the general shupe of and the approxi-
mate magnitudes involved in the theoretically pre-
dicted response churacteristics.  As the present report
is limited to the mathematical nspests of the fAutter
preblem, specific recommendations in Tegard to prac-
tical applications are noi given in this paper.

1 TLe afest of interps) frioton K o some oases essential; this subject will bo
eontained |oa snbsequent paper,
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YELOCITY POTENTIALS, FORCES, AND MOMENTS OF
THE NONCIRCULATORY FLOW

We sball proceed to calculate the various velocity
potentials due to position and velocity of the individ-
ual parts in the whole of the wing-aileron system.
Let us temporarily reprecent the wing by a circle (fig.
1}. The potential of a source ¢ at the origin is given
by

¢=£_ log (x*+ 2"
For a source ¢ at (z;,3)) on the circle

5oz =2y + (y—w)?)

Putting a double source 2¢ at {z,%) and a double
negagive source —2¢ at (r, — ) we obtain for the How
around the circle

_ £ (e—a ¥ -yt
0= 5 08 T T T

The function ¢ on the circle gives directly the sur-
face potentinl of a straight line pg, the projection of the
tirels on the horizontal diameter. (See fiz. 1.) In
this ease =+ 1 — 27 and ¢ is & funetion of x only.

We shall need the integrals:

f log @—m)f+ly—y)®

85 x}z_f_(y{_y)édx, =2r—a) log N—2+/1—2" cos™'c

and
(r—n ¥+ -’ _
fl E o—a) Hyty )z(fl —e)dry = — ¥1 =y T—
—cos~lelx—2e)JI—a+ (r— Y log N
where N=.1 —er— fI-xy1 -

r=e

The location of the eenter of gravity of the wing-
sileron x, is measured from «, the coordinate of the
axis of rotation {fig. 2); ws the locailon of the center

3
b
; 5

- "c‘

P AR
i Arnis of rotation)

€.g.of giteron”’ +]

FIGyRE 2,—Pnramer.lers wi Lbe axrfoil-aileron corobioslioo.

of grevity of the aileron is measured from e, the coordi-
pate of the hinge; and r,, and rp are the radii of gyration
of the wing-aileron referred to @, and of the aileron
referred to the hinge. The quentities 2 and rg are
“poduced 7 values, as defined later in the paper. The
quantities g, X., ¢, and 1z, are positive toward the rear
(right), & is the vertical coordinate of the axis of rota-
tion at ¢ with respect to a fixed reference frame and is
positive downward. The angles « and 8 are positive

clockwice (right-hand surn). The wind velocity ¢ is to
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the right and horizontal. The angle (of attack) «
. refers to the direction of v, the aileron angle g refers to
the undeflected position and nof to the wind direction.
The quantities r, and », always oceur as squares.
Observe that the leading edge is loeated at —1, the
trailing edge at +1, e quantities ¢, ¢, &y, 8 o
and r;, which are repeatedly used in the following
treatment, are all dimensionfess with the half chord &
as reference unit.

The efiect of a flap bent down at an angle 8 (see fig.
2) 18 seen to give rise to a function ¢ obtained by sub-
stituting —#8b for ¢; hence

psﬂv—‘iﬁ[ 1- 7 cos~le— (x—¢) log N

To obiain the eflect of the flap going dewn at an

angular velocity B, we put <= —(z,— )b and get

s =L LT T2 teoslo(a— 20) YT=7
—{x—e)* log N]

To obtain the effect of an angle « of the entire air-

foil, we put ¢= —11in the expression for ¢,, hence

v, =voby1—a°
To depict the airfoil in dewnward motion with a veloe-
ity & (+ down), we need only introduce g’ instead of e.
Thus ,

¢, =hbd 1=

Finally, to deseribe a rotation around point ¢ at an

angular veloeity &, we nofice that thiz motion may be
taken to consist of & rotation around the leading edge
¢= —1 at an angular velocity & plus o vertical motion
with a velocity —&(1+¢)b. Then

tpa=%§w(:r+ Nf1I—F—a(l + )12
G)‘\,'rl -5t

= &bﬂ(éx -

The following tables give in succession the velocity
potentials and & set of mtegrals with associated con-
stants, which we will need in the caleutation of the air
forces and moments.

VYELOCITY FOTENTIALS

ea=vab 1 =%

cr=hbT—o*
= &b* %:r, - a) Vi—ot
o, 11r 2Bb[4/1—2 cos™le— (v —¢) log V]
662[ﬂ -

—{r— c)’log N]
Na=l—e— FI—2 :c*q/l—ré

xT—&.

£+ (x—2)4/1-2% cos™'¢

where

2 Soma of the mors diflenlt Intearn] evaluations are piven in Appendix 1L

INTEGRALS
1 +1
J; gl = — gvai; f_ odr= %i}ar
| . +1
L eidr=— _%hTa f (padx- Eh‘ﬂ'

1 +1
J; widr = &bt Ty f walde= ~ ab” Lid

- b

Jt %idl"“ - E;?JBT:»
L - b

j; padr = 2——1_195&

1 b '
f-pa{:l:—c)da:— —EvaT,
< .

+1
.[—l qo_qdm: - EvBT,
RN
| ewn= - S,
+1 - b
f—i gfr—e)de=— gnac«
L . -1 ,
J: ei(x—c)dp= — ghT] f_l et —o)de =~ gfwar
f] ealx—¢)dr= ab*T, j‘tlwe(x— cide=ab Tar
[ —
1 b +1 ]
f esle—eda=—5 vpl; f we(@—clde = — quB8T;
¢ . -1 2

L ) . ) bz . -+1 ) szT?
J: gile— oyl ="—5-8T; L: pie—c)dz=—3
CONSTANTS
= -—Jl — 246N e cosle
=c{1—¢5 — V1 — (1 +¢cos ‘e Helcose)?
To= - G?; + C?) {cos™ )2+ ic V1I=¢ cos™'c(7+2¢%)

- é(l—é’) (Be2+ 4)
Ty=—cos~le+eyfT—
Ty=~(1— ¢} — (eose)*+ 2e4/1— ¢ cos™e
Ta=T;

1= —(é-iw’) t:os“c—i—éc V1 =274 2eh

Te= —%yl—c (2t + 1) +ecos™te

111 — 1
Tg=2[:—3(4l—?)s+af’.:|=§(—p+aT.,)
wherepa—l(ﬁ:c_?)‘

= T—c+cos e
T,,mcos“’ ell—20+ /1—-F2—¢
T+ 1—ot (2+e)—cos™ ¢ (2c+1)

Tu=3 (=T~ (e=a) T\

1
Tu = m“"l" as

B3| b

FORCES AND MOMENTS

The velecity potentials being known, we are able to
caleulate local pressures and by integration to obtain
the forces and moments actmg on the airfoil and
aileron.
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Employing the extended Bernoulli Theorem for un-
steady flow, the local pressure is, except. for s constant

hEp (2 as
where w is the local veloclty and ¢ the velocity poten-
tial at the point. Substituting w-v-}-% we obtain

ultimately for the pressure difference between the
upper and lower surface at z

p=-= 2*"( vie+3y Y
where v is the constant velocity of the fluid relative to
the airfoil at infinity. Putting down the integrals for
the force on the entire airfoil, the moment on the flap

Y

Fravke $.—Conformal representation of the wing profile with roferanss to the
cirenlatory flow,

around the hinge, and the inoment on the entire air-
foil, we obtain by means of partial integrations

P 20 [ "o
My= —. b’fclcb(x—c) da+ 2pvbJ;]qad;t
M, = —2q0t f e o) dut vabf_‘:lpdx
R L

Or, on introdueing the individual velocity potentials
from page 5,
P= - pb?[omix + wh— bmai —oT,6—bT18)

M= —pbs[- Ti= Tih+ 2T b o3 - 1 nb;s]

(I

+pvb’|:-—vT.,a-' Th+ 21"“5&*%@1",;3— };Tgbé]
- pbf[wa ~ @Ty+ T bra+ 2T+ 1 Ty
+G 7,-1 Tg) boi— Lo ¢ Tk T,b'r;] (In)

M, = '-'pb”[—arv”a—l- r(%+a") ete T+ {1 -1,
— - Tbfo+ | — T —{o—u) 5%

—barh— wh] (I1T)

YELOCITY POTENTIALS, FORCES, AND MOMENTS
OF THE CIRCULATORY FLOW

In the following we shall determine the velocity
potentials and associated forces gnd moments due to a
surface of discontinuity of strength U extending along
the positive 2 axis from the wing to infinity. The
velocity potentisl of the flow around the circle (fig. 3)
resulting from the vortex element — AT at {X;, 0) is

arf Y R Y
er=g| tan™ g —tan x_ 1
b

(~x+xo)r
—(X¢.+E)x+ Y241

whero (X Y) are the coordinates of the variable
and X;is the coordinate of — AT on the z axis.

_ar

-1
21’.t.a.ll

Introducmg Xo+

_._=21°

or Xy=uy+ +f;"— 1 on the x axis

and X' =2 and ¥'=+/1—27 on the circle
the equation becomes

AT 11— 2 —1
Pew ™= — 5 tan T—az,

This expression- gives the clockwise circulation
around the airfoil due to the element — AT at xp.

Oy

b = —
We have: p= Zp( +”b:c
But, since the element — AT will now be regarded a8
moving to the right relative to the airfoil with a
velocity »

De Do
"
Henee, p=—2pp (%";+3a3;‘3
Further
2 Lyt — 2
2r Bp_ p—(l xro) /1 —22 (l—m)_’
AT Ox 1+(1—2?”)(=Fo 1)
(1 —axp)?
_NI—1_ 1
V-2 @)
and
2r Jy_ (1 it‘xﬂ) '\Io W Hn)?
AT 3y~ V! T La- :r’)( 2—1)
(T =z,
=_1/1_:_5:§ 1
VT =1 @—1x)
By addition:
aqo_!_ aqp ) .
%" B2 2% Yl-siyri—1
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To obtain the force on the ai]eron, we need the

integral
deo | Oy f ke
f(ﬁz"'bx de= AxE— 11 —2*
R TSN Sy
21_[‘/%—_1305 x+4—

o=l

AT To -1
o [ _‘1}?_—1 cos™le +
Thus, for the force on the aileron

APGl="'Wb—(_\f - -—c’) or
APg= — b r [ 1/% (o5~ — AT—&)

=]

Wo_l

(!09

[ntegrated, with AT = Udx,

P,= —%b[(cos‘lc—- 1—¢ )f \/—deo

W ‘ﬁ Zot 1 deo]

wp—1
for ¢==—1 wa obtsin the expression for P, the force
on the whole airfoil

-y | —Xe
| P Py J; W peyt Udz,
Since I7 is considered stationary with respect to the
fluid elements

av)

=f(vt— 230)

where ¢ is the time since the beginning of the motion.
{7 is thus a function of the distance from the location
of the first voriex element or, referred to a system
moving with the fluid, U is stationery in value.
Similerly we obtain for the moment on the aileron

[ (F+38) ot} f__Ml

v Yol — 1
A 1

1 L
~ e oI 21— a:“—l-xvg‘ f—c{qu’
1
+ (5 - xgc)cos“xl
+5r | Gt §-nvi=e
= - —1
+2(1 Zxoc)cos c:l

gi[ﬁ(\. T—¢t—¢ cos™ ’C)

1

+rmy (cose “/'_‘_"”.)J

Finally
dMp=— pﬁbeé[‘[ %o

ﬂ(l +§)
—cos™e (c + 1)} Jx"-'- L (cos~ ‘ﬂ—cq/ch’) ]

Putting aI'= {7dz, and integrating

)
— 08 ‘c(a + 2)}f 1/—0“ Ddz,
+ (cos™e— e (1—¢) EJ; Ltl Ud.'.:u] (V)

ap—1
Further, for the moment. on the entire airfoil sround &

J‘+1(3¢+ a“")(g;—a)dx“ T v{m[(xo‘i‘ \h —at
+(%_$oﬂ) cos™! x] : 2r af —1(2_M)

and AM,=— m’nrﬁ
Integrat.ed this becomes
——:r.,a,
M,= —p@b 1llr————?fn:ia:.u
SEESPR xo(a-l-l)
_ _Wf i2 200 A2 v,
‘\JIIQEO -1 1’.1:0 —1

= i [ { ‘/%“ ~ (o= )—}deo vI)

THE MAGNITUDE OF THE CIRCULATION

The magnitude of the circulation iz determined hy
the Kutta condition, which requires that no infinite
velocities exdst at the trailing edge,
or, at =1

b} .
E;fcpp +o,t+ oit 0t eat @d) =finite

Introducing the values of ¢,, ete. from page 5 and

¥y from gf page 6 gives the important relation:

o ofret 1
Jx; deo=va+h+b(§—a)

Tiﬂ Tll

ﬁ+b B (VII)

This relation must be satisfied to comply with the
Kutta condition, which states that the flow shall leave
the airfoil at the trailing edge. _

It is observed that the relation reduces to that of the
Kutta condition for stationary flow on putting z,= o
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nnd in subsequenca omitsing the variable parameters
B and ?a
Let us write

f VE [rtl Ud:o—m+?a+b(§— 1)&

Twﬂﬁ“l‘bT“ﬁ Q

Introduced in (IV)

® gy
f 2 17ds,
P —2epbQal¥iiol

f W/i“fi Udeo

from (V)
My= — 2008 (,/ﬁ*(l +§)—cos-1 c(c +%))X
©
[ Udz,
[ —
% +1 cos~ ¢ — 41 —c") Q
I Jx-—-—°+lde 2
. xp—1 o
100 — |
! _ T T A —
}30 —r-t- -_//___.--
.50
2
20| et — —=
-] / o |
0 T A G Tz 16 20 84 26 32 a6 40
L&
Ficure 4.—The funstions F sod 7 agaipst l—
and from (V1)
[‘ = [ diy
M, = —2xppb*] = — "{x" :-]l Q
f \/"”" Udis
Introducing
'\l’l‘n—“ bdxn
f ch& 1 Udx,
we obtain finally
P= —2phxCQ (VIII)

Ms= —2pub* [(vrl_-_c’(l +%)—cos“ a(c +%))O'

+ % (cos™ ¢— ch_—_c*)]QE — b3 (Tl — e Ix)

M,- 2m52[(4 +3)0- é:IQ X
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wheré @ is given above and ¢'=C(k) will be treated in
the following section.

YALUE QF THE FUNCTION (£}

Put U=t L*(-2)*7]
where s=#l (53— =), the distance from the #first vortex
element to the airfoil, and  a positive constant deter-
mining the wave length,
then

Fa —-x-'i—-e"“odx
1 -1
Xa + 1

At |

Clly= "
)

These integrels are known, see next part, formulas

XD
' akz‘od X

(XIV)—(XVID and we obtain ®
m AT
Oy 2TEN g
_%-JI_%Y0+£%—YI_'E%J0 _(J1+YD)+1(YI"'JD)
_ (ST (o + Vo) —il(¥ = o))
(J1+ Yo)2+ (YI-JO)3
_Jibh+ ¥y + V(¥ — )
(J1+ Y0]2+ (Yl_JD)z
Yx(J|+ Yo —=Jl¥, = U)“F+'£G

TNt Yo+ (¥ — )

where
Jl(gl + Yo} + Yl(yl — Ju)
i+ o)+ (Y-
Y Yo+ JJ,
(Wt T+ (X = h)*
These functions, which are of fundamental import-
ance in the theory of the oscillating airfoil are given

F= (X1I)

G=— (XIID)

graphically against the argument %’ in figure £.

SOLUTON OF THE DEFINITE INTEGRALS IN € BY MEANS OF RESSEL
: FUNGTIONS
Wa have
£
K. (2)= r ™! oosh i d?
+fe

(Formula (34), p. 51—Gray, Mathews

& MacRobert: Treatize on PBessel
Functions. London, 1922)
where E
A
K.(O=¢? G G0
{Eq. (28), sec. 3, p. 23, same reference)
and )
6. =~ To +[leg 23—+ @
but

¥, @) =3 Ya(@) + Gog 2~ 1) Js @

{(where ¥,(x} iz from N. Nielsen:
Handbuch der Theorie der Cylinder-
funktionen. Leipzig, 1904).

# Thiz mmy sl be expressed in [Minkel functions, Co —;—-+f’7:. T
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Thus,
G, (& )—‘-[Y (1) —iJu (1)
We have
Ko("’%k) J‘ & wolh ¢ dt’_f ‘\(____d;;
]
or .
- . _ ("= cos kxdx = sin_krder
mpYe®tigh® =) Ty i) TE
“Thus,
T IR (X1V)
JUoaf2t—
N S:}_jﬂiﬁ ~Xlk) &V)
Further,
— i) = ® ik oosh = “e Frdx
K (—ik) .ﬁ é ¢ coshidt N = g
G E)=—ig 2Tk - J. (k)
- z N
=j: ) (cos kx+16in ka)dx
Thus,
@ cos_ks:d:l:= —EJ (‘f) (KVI)
L VR 2+
*paniede o«

TOTAL AERODYNAMIC FORCES AND MOMENTS

TOTAL FORCE
From cquations (I) and (VIII} we obtain

P= —pb¥pmwa wh—wbad— o T2 — T8

- -n',us:bC{va+fa+b é— a)a+$T1wﬁ

1.
oo Th)

TOTAL MOMBNTS

(XVIII)

From equations (II) and (IX) we obtain similarly

M,= —pb{{ 9T, T+ T.(a - é)va& 2T

+108(Te— L) -

-~ le:r;]— b Tl

+%T]Q?}ﬁ + b%ﬂ'T“B}

path+b E—a)a

@’bﬁTdTu - _stgﬂ

(XIX)

From equations (II1) and (X)
M= — b o 5 a Yobict ot +e2)s
+ (Tt T8
+ (Tl— To (o — )T, +%Tn)ub,9
(Tt e~ Ty Y —awdh
+ 2pvbix (a+2)0{@a+h+b }—a)

+ 2T+ b= Tud| (XX)

DIFFERENTIAL EQUATIONS OF MOTION

Expressing the equilibrium of the moments about a
of the entire airfoil, of the moments on the aileron
about ¢, and of the vertical forces, we obtain, respec-
tively, the following three aquations:

@ —-Lé‘s—Iﬁﬁ—b(c-—a)Spﬁ_SJi—aO¢+M¢,=0
g: *Ipé'—fp&—b(c*a)&sjs_ﬁgp—ﬁOp+Mp=0
bt kM= 88, BSy—hCh+ P=0

Rearranged:.

at al,+ B+ ble— a)Sy) + AS + o0, — M, =0
B a(!p b{@ &)Sp)+|ﬂjﬁ+h8p+|80ﬁ Mp=0
h: &8, +f§8§+kM hCi—

The constanta ara defined a3 fo]lows:

P mass of air per unit of volume,

b, balf chord of wing.

M, mass of wing per unit of length,

8o, Ss static momenis of wing (in slugs-feet) per
unit length of wing-aileron and aileron,
rezpectively. The former ia referred to
the axis ¢; the latter, to the hinge ¢.

Iods, moments of inertia per unit length of
wing-aileron and aileron about a and ¢,
respectively.

&, torsional stiffness of wing around ¢, cor-
responding to unit length.

O, torsional stiffness of aileron around ¢, cor-
résponding to unit length.

O, stiffness of wing in deflection, correspond-

ing to unit length.
DEFINITION OF PARAMETERS USED IN EQUATIONS

wob?

x=Zr the ratio of the mass of a eylinder of air of

a diameter equal to the chord of the
wing to the mass of the wing, both taken
for equal length along span,
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r.= 'J ﬁ‘?; the radius of gyration divided by &.
¥, =%5}

the center of gravity distance of the wing
from a, divided by &.

‘/ %~ the frequency of torsional vibraticn
around g.

r,g=\/ ﬁ%g:.red/wced radius of gyrotion of aileron

divided by b, that is, the radius at

which the entire mass of the airfoil
would have to be concentrated to give

the moment. of inertia of t.he aileron Ig,

Y= %%f reduced center of gravity distance from ¢.
wg= \/ %; frequency of torsional vibration of aileron

ground e. .
W= \/ %r frequeney of wing in deflection.

FINAL EQUATIONS IN NONDIMENSIONAL FORM
On introducing the quantities A, M and P,
replacing Ty and T} from page 5, and reducing to
nondimensional form, we obhtain tha following system

of equations;

(A) al:r +x( +G):|+ab (2 @ +asz+ﬁ[rB+ c— a)xﬁ—gx—(c a,jTI ]+1' ? ~2p—-(%—a)T¢:|

+ ﬁx;L:%(Tﬁ T} +i'£( ¢—ax)%—2x(a+ 1)

20k va
R

Tm v

%+(2—a)a+ 38+

2o

. T " 1 .
®) & riemomec - o=ak | +a{p-Ti~ 3P 5+ B(r ss_;lzm)— ST T

+8 sz"“q.zsz(Ts TTlD):|+h($ﬁ——RT1 1 le vo{k[-ﬁ- =ﬁ-+ __G’)CH‘—EB—I—-—

Twe Ta .

3]0

©) d(za—m)+a3x+6(x,g~—ﬂrc) BBT.,M +h{1+x)% +I$M'5

trO'(k} 9;+{Ib+(§_a) Tm??ﬁ_[_T::B

SOLUTION OF EQUATIONS

As mentioned in the introduetion, we shall only have
to specify the conditions under which an unstable
equilibriumm may exist, no general solution being
needed. We shall therefore introduce the variables at
once as sme functions of the distance s or, in complex

form with k as an ausilisry parameter, giving the
ratio of the wave length to 2= times the half chord &:

wt
a=oe °

ﬁ=ﬁuei(t%+°")

and h=huei(k%w’)

where ¢ is the distance from the airfoil to the first
voriex element, §=v, and 2, and @, are phase angles
of g and & with respect to .

298

=0

Having introduced these quantities in our system of
2
equations, we shall divide through by (%fc) K,

‘We observe that the velocity » is then contained in
only oné¢ term of each equation. We shall consider
this term containing ¢ as the unknown parsmeter 8.X,
To distinguish terms containing X we shall empley a
bar; terms without bars do not contain X

‘We shall resort to the following notation, taking care
to retain a perfectly cyclic arrangement. Let the
letter A refer to- the coefficients in the first equation
not containing C@) or X, B to similar coefficients
of the second equation, and € to those in the third
equation. Let the first subseript o refer to the first
wariable «, the subseript § to the second, and % to the
third. Let the seéond subseripts 1, 2, 3 refer to the
second derivative, the first derivative, and the argu-
ment of each variable, respectively. A, thus refers

to the coefficient in the first equation assoeiated with
the second derivative of ~ and not containing C'(k) or



GENERAL THEORY OF AERODYNAMIC INSTABILITY AND THE MECHANISM OF FLUTTER

X Oy to the constant in the third equation attached to |

k, ote, These coefficients ¢ are as follows:

ra2, 1, 4
Aa1‘= % +(8‘f‘ﬂ:)

A= (%—G)

Aa3=0
z
re Ty ﬁ_ﬁ)
Am—x 1|_+(0 a)(x

(=dm)

Bu=0
r 1.,
B‘ﬂ‘?‘a""?j

By, = _.2_11'5 7
Bm=: {T,— i)

1
i Ba1=?—;T1

Bp=0

BN=

Co=—-a (=4n)

Car=

0m=0
w1 -

< TTI (=B
_1

on=-11,

Cp=0

0&1-1—1"1

Om'=0

Cm=0

1The factpr E af Ty kl is nog ineludad io thesa constants.  Sea the expressions for
the B's and I's on next page.

The solution of the instability problem as contained
in the gystem of three equations A, B, and C is given
by the vanishing of a third-order determinant of com-
plex numbers representing the coefficients. The solu-
tion of particular subcases of two degrees of freedom
is given by the minors involving the particular co-
efficients. We shall denote the case torsion-gileran
(@, B) as case 3, adleren-deflection (8, h) a3 case 2, and
deflection-torsion (h, «) as ease 1. The determinant
form of the solution is given in the major ¢ase and in
the three possible subcases, respectively, by:

Raa+'£faa; Raﬂ—l"l":faﬁ: Rrxh"i"irah
B—_-— Raa‘[‘@:foa, R&B"‘iL&ﬂ; R#h_l"'ifbh =0
Rca+1:I$«J R¢ﬁ+lifc Il E¢h+‘i1¢'h
and
— é&a"—i-[naj Raﬁ‘["ifaﬁ :
H‘h Boatilsa, Buetils =0 Cose 3
Bygtile, Rontilnm
aa ' 3 . = 2
H \Rcﬁ‘[‘t’Is#) ch‘l‘ﬁfch 0 v Case
Em'{'f‘fr:ﬁ: Rw'i't"rca
mﬁﬂ" R“+£Ln, }}¢¢+'*:I¢a; =0 03381
REAL EQUATIONS IMAGINARY EQUATIONS
R oRaﬁ Joud, ¢ ‘En«Ra.B 1 Isﬂ
& calap | o + wo 0 a
RMRW IMIM? IMIM RWRW ase
O,GRM lIMIMJ |RbﬂRbh Io.sfan
RcﬁRch’ |Icﬂf.-.n Ifcﬁfcn * BB 0 Cnse
BoBeel _|Todea| _ o | BoRee ! r ‘
Rnkﬁaa Inh ak |IahIan Ra.ﬁ au =0 CaSE L

NorE.—~Terms: with bars contain X tortnd without bats do not ecootain X,

The 9 quantities R,,, E.s, ote,, refer to the real parts
and the 9 quantities J.., f.s ete, to the imaginary
parts of the coefficients of the 3 varizbles a, 3, and A
in the 3 equations 4, B, (fon page 10. Denoting the
coefficients of &, &, and « in the first equation by o,
g, and 7,

Putita= I priker () ]

which, separated in real and imaginary paris, gives
the quantities R, and .. Similarly, the remaining
quantities B and I are obtained. They are all fune-
tiong of & or (k). The terms with bars Boay B,
and B, are seen to be the only ones containing the
unknown X. The quantities & and X will be defined
shortly. The quantitics R and I are given in the
i following list:
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Ruum = At QuX +7 2(2-1-:1)[(2 G~—f] e
Rag-———A31+PAR+%1—11_(¢;+g)[TnG’—QETmI«:I @)

Rupm —An + 1 2(a+%)6’ ()

R

RBS= _Bﬂl + E{’Bﬁa"l' RBX_‘%:%[THG_sz%F] (5)

Ru=—Bu- 1526 ©)
1 1 1 )
Rc¢=—Cal——‘2[(§——G)G——F] . (7)
Ru=—Cn- 3| Tu6-2T0iF | ®
Rck=—0m"|‘ﬂkX“E2(; . (9}

(L= -z 2(et3)[(3-e)Feq0] - 4] @

o= —E[;<a+§)(TnF+2E TmG) —Am] a2

I¢k=—%2(a+%)ﬁ' (13)
L= [ 22| (3-) P )+ (19)
s "‘E[ﬁ (THF+2E T.6)+ Bm] (i5)
Lu=p°F (o
L] o
T= %I} (5{‘111'"+2$l T..,G)+ Cﬂ] {18)

_%{2 F (19)

The solution as given by the three-row determinant
shall be writien explicitly in X. We are immediately
able to put down for the general ease a cubic equation
in X with complex coefficients and can easily segregate
the three subeases. The quantity I is as before the
vajue of the determinant, but with the term containing
X missing. The quantities Af,., My, and I, are
the minors of the elements in the diagonal squares
aa, b8, and ¢k, respectively. They are expressed ex-
plicitly in terms of B and I under the subcases treated
in the following paragraphs.

-"‘-ca"" ﬂaX Arus Aﬂ"
D= Ay, App+GaX Aw ={)
AW Acﬂ Ach+ Q.NX

where Ay .=Fi.tils. ete.
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Complex cubic equation in X:
D X - (2,05 A oy + Dt Ayt Q2 A ps) X2

4 (Mot BMpe-+ MM X+ D=0 (XXI)
Case 3, (&, 8):
P Qe Apst Qs ) X+ Mou=0 (XXTII)
Case 2, (8, b):
P X (s d o+ Dy Ayt X+ M, =0 (XXIID
Case 1, (A, a):
0. T (hdeat Lada) X+ -Moﬂ= (XXIV)

wiefin-(C5) 1)

Wity 31 brrﬂr
GpX= k?vax (w . )
61",{.0,)

*1
ﬂkX I tJJ (w,.f‘)
and finally
I YLIAY
Tk W)

We are at liberty to introdues the reference param-
eters w, and r,, and the convention adopted is: w, is
the last « in cyelie order in each of the subcases 3, 2,
and 1.

Then 2, = (

) and 2..,=1, thus for
Wn+lragi-1

2
Case 3, 9(‘:(@,1',) and $35=1

Case 2, Y= “:r‘g) and Qx=1

Case 1, m=(‘f’—:) and f.=1
o' a

To treat the general case of thres degrees of freedom
(equation (XX1)), it is observed that the real part
of the equation is of third degree while the imaginary
part furnishes an equation of second degree. The
preblem is to find wvalues of X satisfying both equa-
tions. We shall adopt the following procedure; Plot

graphically X against % for both equations. The points
of intersection are the solutions. We are only con-
cerned with positive values of % and positive values of

A. Observe that we do not have to solve for k, but
may reverse the process by choosing a number of
values of & and solve for X. The plotting of X

- against % for the second-degree equation is simple

enongh, whereas the taslk of course is somewhat more
laborious for the third-degree equation. However,
the general case is of lesa practical importance than
are the three subcases. The equation simplifies con-
siderably, becoming of second degree in X,
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We shall now proceed to consider these three sub- !
cases. By virtue of the cyclic srrangement, we need
only consider the first c¢ase («, 8). The complex |
quadratic equations (XXID-(XXIV}) all resolve |
themselves into {wo independent statements, which
we shall for convenience denote “‘Imaginary equa-
tion' and * Real equation”, the former heing of ﬁt‘st ,
and the latter of second degres in X. All constants
are to be vesolved into their real and imaginary parts,
denoted by an upper index R or I, respectively.

Let M, —M=®,iM?, and let similar expressions
denote M,z and M.,

Case 3, (¢.5). Separating equatmn (XXIT) we obtain,
(1) Imaginary equatmn

(R Ibﬂ+Q§Ina}X+ M’ck—

— M :ch
K== TR
(2) Real equation:
Qo X2+ (RuBpe+ CeRo) X+ MT 0=

Eliminating X we get
Qaﬂﬁ (Mjan) 2 (Qng-i* Qﬂ-Rﬂﬂ) (chmﬂ‘f‘ Q.GIaa} Mjch
+ MEy (SQodag 4 QLo =0

By the convention adopted we have in this case:

n=(5) )
" Nwg/ \rs/’
Arranging the equation in powers of . we have:

ot — M’ o (Rosep) + MPonl s+ Qul (M 2)*
— M o (RyoLipt LoaBns) +2ME T 0 1)
+ [—MfchRMIM-I- MR;& aa'Q] =0

But we have

=2, and =1

Case 1, (h,a)

(Mlcﬁ) - Mca (Rmfm'l'f mRa.ﬂ}
= M ¢h [Rufw—RuIm"i— Rbﬂfaﬁ "_Rbnrfﬂﬂ_ Raafbﬂ - RBBIda] |
= — M (Baplyat TosBpa)

Finally, the equation for Case 3 (o, §) becomes:
9«2 (M chf oﬁ2 . MI&R oﬁI oﬁ) + er[_M 'rch (Raﬁr bt I aﬁRM}

+ QMRmIaaIDﬁ] +ﬂ‘fﬂchfna2 - M'rc na-raa: 0 (XXV) |
whaere ‘

MRch= aaRW_Ra&RN_IamIW'{'IaBIM
MfcthauIaﬁ_RaﬁIaa“]'J-T.WRM_L&RM

The remaining cases may be obtained by cyclic
rearrangement:

W= oy

2
Case 2, (k) Q= (‘:—i) =1
Qﬁ(Mf;a cas—M:aRcaIcn} + 9,9[ - Mﬁa(—Roa[ca + IthcﬁJ
+2ME L L) MR LA — ML BTy =0 (X XVI)
MRW= Rhﬂ ch - RMRcB _Iaﬂfch +IMI¢B
M, =Rl o—Bapliot+ Topller— Ionlies

w=(2) 5
(Ml oa?— MR Lao) [ — M (B oo Lan+ LoaBlun)
F2MB T W) - ML — MR G T =0 (X XVII)
MR=RpR.e—RB.Bon— Lpdeat ool
ﬁﬂs=Rch,—R¢Ju+ IghRaa"'IcuRun

Equations (XXV), (XXVI), and (XXVID) thus
give the solutions of the cases: lorsion-aileron, aileron-
deflection, and deflection-torsion, respectively. The
quantity @ raay iImmediately be plotted against

where

Qa=1

Wr= iy

where

IIE for any valne of the independent parameters.

The coefficients in the equations are sll given'in terms
of B and I, which quantities have been defined above,
Routine calculations and graphs giving Q against

% are conteined in Appendix I and Appendix II,
EKnowing related values of 2 and k’ X iz immediately

expressed as a function of @ by means of the firat-
degres equation. The definition of A and @ for each
subcase is given above. The e¢yclic arrangement, of
all quantities is very convenient as if permits identical
treatment of the thzee subcases.

It shall finally be repeated that the above solutions
represent the berder case of umstable equilibrium,
The plot of X against @ gives a boundary curve between
the stable and the unstable regions in the X2 plane,

It iz preferable, however, to plot the gquantity i}i'?

instead of X, since this quantity i3 proportional to the
square of the flutter speed. The stable area can easily
be identified by inspection as it will contain the axis

k—lgj—é=0, if the combination is stable for zero velocity.

i Laneuey MeMOorIAL AERONAUTICAL LABORATORY,

Natronar Apvisony CoMMITTEE FOR ABRONAUTIONS,
Lanaiey Figve, Va., May 2, 1934,
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APPENDIX I

PROCEDURE IN SOLVING

(1) Determine the R’s and I’s, nine of each for &
major case of three degrees of freedom, or those per-
taining o a particular subcase, 4 '3 and 4 I's.  Refer
to the following for the E's and I's involved in each
case:

The numerals 1 to 9 and 11 to 19 are used for con-
venienece.

(Major case) Three
degrees of freedom

Ra« Iﬂa’ 11

—

2 By Iy 12
3 Ba Ia 13
4 By e 14
5 Ry Iy 15
G Ry I 16
T R I 17
8 R, Iy 18
9 By Iy 1D

{Cas6.3) Torsional-
gileron (a, 8)

1 By, T 11
2 Ry Is 12
4 Ree T 14
5 Ry Iy 15
(Case 2) Aileron-
deflection {3, &)
5 Ry Iy 15
6 Ry, Iy 16
8 Ry Is 18
9 Ry I, 19
(Case 1) Deflection-
torsion (i, o)
7 R I. 17
9 R, I, 19
1 R L. 11
3 B I 13

I+ has been found convenient to split the R’s in two
parts B=R’'1L R, the former being independent of

the argument%. The quantities I and B’ are fune-

NUMERICAL EXAMPLES

tions of the two independent parameters a and ¢ only.?
The formulas are given in the following list.

=g (arg)i(G-0)6~E W
B = i (1 T 3+ (a +%)(T,1G—% TmF)} @)

B =12 (a+ )G )
R -3 7|2 o) 6] @
R'y=~1 Tl”(T..G——TmF) Y-TT) )
B =~ 2 (®)
B = - %2[ %—a)a-%] %)
B = - p2(Tu6=2T0} ) (8)
Bp=—126 @)
L= —2(&+%)K%— )F—t—%@}-f—%—a (1)
L=~ H(a+3)(TuF +3706) +2p (12)
+(3-a)1]
T -2(a+§)F 13)

Tu! _ )F-{-%G‘]»l—%(p—ﬂ—%ﬂ) (14)

Where p=— E (1 —cn3”

1'.,,,--2%5{:1"12 (THF-I-% ﬂoG)—T4T.t’ (15)
In=Tep (16)
1,.,=2{ 3- )F—]—%G}H an
L,;=H(T.,F+%Tm&‘)r—ﬂ} as
1.,=2F (19)

$The guantities J given i the appendix and usad in the following caleulations
&10 seen to differ {rom the I's iven o the body of the paper by tha (actor %. It
may s noticed that this factor drops ent in tha fitst-degrac equations,
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Choosing certain values of ¢ and ¢ and smploying
the values of the T”s given by the formulas of the report
(p. 5 oxin table I and also using the values of F and
& (formulas (XII) and (XIII)} or table II, we evaluate

the quantities I and R’ for a certain number of %

values. The results of this evaluation are given in .

tables IIT and IV, which have heen worked out for
a¢=0,—0.2, and—0.4, and for ¢=0.5 and ¢=0. The

range of % i from 0 to 40. These table= save the work

of caleulating the I’s and B ’s for alinost all cases of
practical importance. Inierpolation may be used for
infermediate values. 'This leaves the quantities B’ to
be datermined. These, being independent of %r are as

a resulf sasy to obitain. Their values, using the same
gystem of numbers for identification, and referring to

the definition of the original independent variables on |

pages 9 and 10, are given as follows:

aam_'__( +ﬂ',2) (1)
BTl gt
B p=—"+a {3)
R .—same as R'sg {4)
Ry--E4 11, )
R y— —ff+ oy (8)
B’ .—same as B, (7
B’ g=same a8 R’y to)]

, 1
R g — 1

Because of the symmetrical arvangement in the
determinant, the 9 quantities are seen to reduce to
6 quantities to be caleulated. It is very fortunate,
indeed, that all the remaining variablessegregate thom-

selves in the & valves of B’ which areindepsndent of %r

while the more complicated [ and R" are functions
sololy of ¢ and @. In order to solve any problem it is
therefore only necessary to refer to tables IIT and TV
and then to calculate the 6 values of B,

The quantities (1) to {(9) and {11) to (19) thus
having been defermined, the plot of 2 against %, which
cobstitutes our method of solution, is obtained by
solving the equation ¢ff{H4-¢==0. The constonts

@, b, and ¢ are obtained automatically by computation
according to the following scheme:

Case 3

Find products 1.5 2 4 1115 12,14

Then M?,=1.5—2, 4“1.?*(“ 15—-12.14)

Find producis 1.15 2.14 11.5
Then M7,=1.16—2.141+11.5~12.4
and ¢=ME,(15)2— M7, (5.15)
b=— M 3(2,14+12.4)+ M=,
o= MP(11)2m M7 o (1.11)

%=_mu®+n

My

12.4

(11.15)
Fmd. 2,

Solution:

Similarly
Case 2

5.9 6.8 15.19
M200=5,9—6.8 — (16.19—16.18)

510 6.18 159
M,,=5.10—6.184159—16.8
C&=mu (IQ)S_M’M&(‘Q' 19)
b=—M o (6.18-16.8) —2MF,.(15.18)

16.18

16.8

e=M7* . (15— M7 . (5.15) Find 0,
1 _.93!19!—]—15
X A,
and
Casge 1
4.1 v.8 19.11 17.13
MP, =01 7.3~ 25(10.11—17.13)
9.11 7.13 191 17.3
M?yp=0.11—7.13+19.1—-17.3
a=MB(11)2— M 4(1.11)
b= — M (7. 13—]—17 3) 4+ ARp(19.11)
=B (10) 20— M7 15(9.10) Find 2,
‘:sz,,(u)+19
H‘w

2, is defined as (C"" “) for case 3;

Gy is defined as (? for case 2; and
T

2 is defined as (o:::u
The quantity - is (—“i)“ by definition

e quantity » s & = ¥ .
Sinee both smdl are caleulated for each value of

F we may plot k“ ? directly as a functlon of &. This

guantity, which is proportional to the square of the
flutter gpeed, represents the solution.
We shall sometimes use the square root of the above

quantity, viz, 3, ,\/ 5= 51’1:1; and will denote this
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guantity by F, which we shall term the “flutter factor "
The flutter velocity is consequently obtained as

bur
F mr
Wi

Since F is nondimensional, the quantity

=

é J'r

must

obviously be 8 veloeity. It is useful to estab]ish the
significance of this velocity, with reference to which
the flutter spoed, so to speak, is measured. Observing

2
that « —'—r—f;— and that the stiffness in case 1is given by

Do =,\X —M.%E—E this reference velocity may be writien:

bro
e

‘.ll‘}?t?g?b?_

The velocity ve is thus the velocity at which the total

bw T,
t‘R «a

force on the airfoil merg'2b attacking with an arm g

equals the torsional stiffuess €, of the wing, This
statement means, in case 1, that the reference velocity
used is equal to the ‘“divergence” velocity obtained
with the torsional axis in the middle of the chord. This
velocity is considerably smaller than the ususl diver-
gence velocity, which may be sxpressed as

In= ‘I'ng

2+a

where ¢ ranges from 0 to—%- We may thus express
the Rutter velocity us
fp= ?JRF

304

In case 3 the reference velocity has & similar signifi-
cance, that is, it is the velocity at which the entire lift of

the airfoil attacking with a leverage 6 equals numeri-

cally the torsional stiffness (% of the &lleron or movable
tail surface. '

In case 2, no suitable or useful significance of the
reference velocjty is available.

TABLE L.—VALTUES OF T

~ cml cmlg | = e==34 | em-1
|
0 |—0.1258  —0.0667 | L ame7 [ 3. 1416
0 6.2 | —1.5707 | —4. 8358 | —0. 9687
1] —. 05813 | — 2084 | —3 8375 | —11. 1034
0 —.f142 | —LE70R | =2 5974 | =1 1418
[ — Q0R | =3 4674 | =6 9003 | —D.8547
0 —0. 2108 | —L5MT | —4. 3356 | —9. 5087
0 L00E2 | = 196 [ —L 190 [ —3 5843
0 08 L = 5958 | —L4808 | —3 115
T 10032 ¢ 2hTR 2, 9601 4 416
[ 1 2000 2 5708 6. 2508 0, §248
1] Widii L4 L 2980 3 1418

TABLE I1.—TARLE OF THE BESSEL FUNCTIONS Jo, 0y
Yo, ¥i AND THE FUNCTIONS F AND &

ST YL Vil Yx—J'O)
(St Yol ¥y~ Jodt

_ _ P~ S Yi—J
By = = Forr (P T

Fiiy=-

=

_.
P SR
&
| =
BT wwgs

otk
86&‘!0’“ L b
B

.
=

3
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TABLE III.—VALUES OF R
1 _ |
£ Jol w 4% .| u 1 134 1% 2 2% s 5 10 % 40
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APPENDIX I
NUMERICAL CALCULATIONS

A number of routine examples have been worked out
to illustrate typical results. A “standard” case has
been chosen, represented by the following constants:

k=01, e=0.5, a=—0.4, x¢=0.2,

1
f¢2=0.25, 5= 80} Tp = 1—60'

@qy w5, Wi vaTiable,

We will show the results of a mumerical computation
of the three pessible subcases in succession,

180
1 £ i
/ |'
20— |.
.
RN .- .
40 =

|
| | I
o A £ .3 < ) & T 8 F 21
L

FreueE 5.—Case 3, Torsion-aileron {=, 5): Standard case. Shﬂwiug . amainst%-

Case 3, Torgion-aileron («,8): Figure 5 shows the Q,

against F relation and figure 6 the final curve

P ) vt 0~(352) <4052

20
16 |’
i
F
11 N
— f_
LN LA
g
| \\ 4/,
| N il
a 20 <40 & 8 00 120 N0 S0 80

o
Fravng 8. —Case 3. Torsien-gileren (=, 51 Standard case. Showing futter faclor
. F Against ;.

Cese 2, Aileron-flexure (8, A): Figure 7 shows the

1
25 against 7 1 relation® and figure $ the final curve x({%)
Y,

against Qg (w ) 1'60 w)
¢l N

6Tk iz reehzed that considerabls cars must be exareised to get thede eurves redson-
bly accorate.
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The heavy line shows the standard case, while the
remaining curves show the effect of a chinge in the

1
value of xy to Zﬁ and 0
Case I, Flexure-torsion (&, «): Figure % shows again

.of2 e TN

%g 24/ 160 g --ra-'f/ 0 \
o08 /@ \M
@ Tx,,::/ o\
/AN
Y

My o<\\ ' \

-.004———c

-.008
g 2 <4
ik
FiruReE 7.~ Case 2, Aleroo-dedection (f, §): () Btandard case. (b}, (c), (4} lodicate
dependeney on rg. Casa (d), #p=a=—0.0M, reduces to 8 poinl.

the Q, ageinst % relation and figure 10 the final result

(w.,r.,b) against Q,= ( ru) 4(

Clase 1, which is of importance in the propeller theory,
has been treated in more detail. The quantity #shown

in the figures is vk w—v—s'

TFigure 11 shows the dependency on =2 =2;

Wy W2
figure 12 shows the dependency-on the location of the
6xis ¢; figure 13 shows the dependency on the radius of
gyTation 7,=r; and figure 14 shows the dependency
on the location of the center of gravity x, for three
different combinations of constants,

EXPERIMENTAL RESULTS

Detailed diseussion of the oxperimenial work will not
be given in this paper, but shall be reserved for a later
report. The experiments given in the following are
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restricted to wings of a large aspect ratio, arranged with
. two or three degrees of freedom in accordance with the

T
N |
A2 |
\\
PHAN /
\Ela} {®)
- -
8 ™ |
. g = 1/50
F a4
& \ /
- 10D
4 - fzem 1
Unstable !
2 /
L [ ity ®e =260 |
o 002 004 Q0 008 .00 e G4

g
Fiovre A—Case 2, Afleron-deileotion (8, A): Final curves giving futter factor £
agsinst §2y sorresponding 1o cases ahown in Ggura 7.

theoretical cases, The wing is free to move parallel to
itself In & vertical direction (k); is equipped with an

&g
! l

00

40
&0 L

dly

20 , !
o=
-
=20
.G 2 P & 8 1a
Lk

rrevrs #-=Case 1, Flogure-torglon b, o) Stapdard chse,  Showing S minst%—»

axts in roller bearings at (a) (fig. 2) for torsion, and
with an aileron hinged at (¢). Variable or exchange-

able springs restrain the wing to its equilibrium
position,

Lz

LOF

-
]

—

.2 \

L~
\\ =
1] 1
0 e 8 2 I8 20
iy
Fravre 14.—Case |, Flexure-borsion (b, o): Standard case. Showlng futter Magtor
F againsk 5y,

We shall present results obtained on two wings, both
of symmetrical cross sectiom 12 percent thick, and with
chord 26=12.Y cm, tested at 0°.

£ 50— 3
Y
& (& o]
‘“‘\‘tﬁn Vg &0

100, ", s

e P /“\
-y e A
F fal W)

0 % % 1a % %

Wy
FIGURE 11.—Caze 1, Flegure-torston (6, &); Showing dependency of }"onff-:- The

uppor enrva isexperiroenial Alriall with =g a= =04 7w 0% =05 2 variable.
Wing A, aluminum, with the following constants:

. ﬁg, a=—04, 2,=0.31, 0,173, and 0.038,

respectively;
rol=043 and w,=7 X 2%
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Wing B, wood, with flap, and the constants:

x=ﬁ, ¢m0.5, am—04, 420,102, r2=0.178,
#3=0.019, r*=0.007%, and w, kept constant
=]7.6%2r

The resulis for wing A, case 1, are given in figure 15;
and those for wing B, cases 2 and 3, are given in figures
16 and 17, respectively, The abscissas are the fre-
queney ratios and the ordinates are the velocities in
cmfsec, Compared with the theoretical resulis caleu-
lated for the three test cases, there is an almost perfect

3.00

2.50

2.00 _f

150 »

Lo

S0

o -2 =4 -8
a

F1aURE 12—Case 1, Floxtiretersion (r, of: Showing dependsocy of F on location
of sais ol rotation ¢. Aicfoll with r-(—é-:;-o,z;, -%:ﬂ.-%: a'varisble,
)
agreement in case 1 (fig. 15). Not only is the minimum
velocity found near the same frequency ratie, but the
experimente]l and theorefical walues are, furthermore,
very nearly alike. Very important is also the fact that
the peculiar shape of the response curve in case 2, pre-
dicted by the theory, repeats itself experimentally.
The theory predicts 8 range of instabilities extending
from a small value of the velocity to a definite upper

limit. It was very gratifying to observe that the upper-

branch of the curve not only existed but that it was
remarkably definite. A small increase in speed near
this upper limit would suffice to change the condition
from violent flutter to complete rest, no range of transi-
tion being observed. The experimental cases 2 and 3
are compared with theoretical results given by the
dotted lines in both figures (figs. 16 and 17).
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The conelusion from the experiments is briefly that
the general shapes of the predicted response curves re-

2.00
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2
F :
’i‘ \
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LO0
AN
\\
AN
p1s) 3 \;
~
& .5 LT A

r
Firayre 13.—0aga |, Floxora-torsion (k, o)t Showing dependency of F on the radins
of gyratlon ra=r,

A, birtol] with dm —0t; o =00 S 3 v vacisble,

8. sitfol) with am —0.4; =i 202 o) g0; 7 variable.

2,50
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]
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/
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o
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C : ,..% -1 aR=OF
2
wra
[+] -] K B
o

FiURE 14.—Case 1, Flexuretorsion (4, o} Showing dependency of P on 2s, the
location of tha penter of gravity.

A, airioll with ppi =04 wmgsi Bemt iz varisbls.

1

6 12 variable

B, irfofl With remti gam — 0.4} st i Y
F] 1w

€, airfoll with r--%'. R Té'o: Sty £ varisble.

peat themselves satisfactorily. Next, that the influ-
ence of the internal friction” obviously is quite appreei-
7 Thiz mattar 15 the subjsct of & paper pow o preparation,
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able in ¢age 3. This could have been expected since S0 |' T T
the predicted velocitieg and thus also the air forces on N e 0.009
the aileron are very low, and no steps were taken to <0 =
eliminate the friction in the hinge, The outline of the ] T o
stable region is rather vague, and the wing is subject g‘w "” T L
: Exparimeniol by =307
50 »eg Unstabie] 3
Y 10 / - -
40 :\'\':" — /F/
'\\ é’o(& | , -
~ 1 T
: Frporimentor AT 0 2 4 & 8 {0 42 iF 16 (&
30 AN et AR o/
E. \.\ [ ] FIGUEE 16,—Case 2. Wing [, Toeorerical and expacimentsl ¢arves giviog Butter
gec ™~ i, volocity ¥ againgt Irequancy ratio :—:* Alieron-deflertion (8, k).
0
]
/@ J | |
Exparimentaf
30 insfobie |
[} £ 4 & 8 Lo f.2 I "
Wy e E
FiGUSE 16—Case 1, Wing A. Theoretical aod sxperimental cooves glviog dutter h 20 t AT very indefinrte
docity ¢ against freg ¥ ratic 24 Deflection-tersion. ~
A
. . P} -
to temporary vibrations &t much lower speeds than : L
that at which the viclent flutter starts. The ahove ] il
experiments are seen to refer to cases of exagperated -
A ¢ ad 048 Wé L8 2o 2% 28
umbalance, and therefore of low flutter speeds. It is Wy el
evident that the internal friction is less important ab | pgung 17.—Cace 5. Theorstical ourve giving Butter veloelty ngalnst the ire-
larger velocities. The friction does in 2ll cases increase quoncy ratio &2 The exparimental azsteble area is indefaite dus to the ifo-

the speed at which flutter starts. portance of interosl frictich at very swall velocities. Torsiom-sileron (x, 89

309



APPENDIX III

EVALUATION OF ¢

T @=n) Yy —w)
flo g ) +(y+‘y.)*dx'

= (:t' 31)2“‘( U1 ﬁfldl‘[
nlog o= x)’-i-fy-i-y')zl f i Ge—a)
1—ze—y+/1—¢? Qf o day
-y
]

{a—rc) —at(—%,)
. ? x:dﬂ«”] - dx1
+J‘ .\/1_312(¢_m| \/f?-"'l2
f dil
@—a) V1 —x’

% 1—z cos 84 +/1 —x* sin § e f=1

=—2¢log

[Puttmg x =105 8]

=—f-

J1—7 log cos f—x o0y f=¢
e z 1—ca++41—2%1—¢ -
cos c-l—_\“_:czlog py—
R e—zx
oos c+1,l l—cr—v‘l—z: V1—¢t

I 2{= —2¢log (1—ex—+1—2*1—c)+2¢ log (x—c)
—2.J1—2% cos7le— 2z log (e—2)
+2z log (1—ex— /1 —=23{1—c%
=2(z—c¢) log (l —cw—1=2/1 _GY)

L

—2,/T=3F cos¢
EVALUATION OF ¢;

o= [ logtto—arr+ w1
—logl{z—a)*+ y+ )"}

~ O ogl o+ y— 1))

—loglx—z) + @+ )%

1 2 dI1
+yf e sy

J”(x.—c)zd:cl J‘l fm—cide _ _J'(cos 6-—¢)*de

—e&)da,

thir—z) 1= (x—x) t—cos 6
xy==cos #, y=sin 8, dz,=—sin pds
Ly —e)iday ) J. de
[ m-—sm b+ (x—2e)0—(x—¢) s

l‘l 6 '“l diz4-8)
Jei—cosé ) x+cos (x4
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1 F—x cos #—f1—2? sin §| o= 4=1

T Y log r—eos § cos Pme
1 1— l—ex— my"l?c”]
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